Matematyka

Matematyka z plusem 6 (Podręcznik, GWO)

Zastanów się, jak obliczyć w pamięci podany procent danej liczby. Oblicz: 4.8 gwiazdek na podstawie 15 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Matematyka

Zastanów się, jak obliczyć w pamięci podany procent danej liczby. Oblicz:

1
 Zadanie
2
 Zadanie

3
 Zadanie

4
 Zadanie
5
 Zadanie
6
 Zadanie
7
 Zadanie
8
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a)

10% liczby 40 to 4

30% liczby 40 to trzy razy więcej (4 ∙ 3 = 12), czyli 12

 

b)

10% liczby 20 to 2

60% liczby 20 to sześć razy więcej - 6 ∙ 2 = 12

 

c)

10% liczby 1200 to 120

20% liczby 1200 to dwa razy więcej 120 ∙ 2 = 240

 

d)

10% liczby 25 to 2,5

40% liczby 25 to cztery razy więcej - 4 ∙ 2,5 = 10

 

e)

10% liczby 140 to 14

5% liczby 140 to dwa razy mniej - 14 : 2 = 7

 

f)

10% liczby 60 to 6

20% tej liczby to dwa razy więcej - 6 ∙ 2 = 12

120% = 100% + 20%

60 + 12 = 72

DYSKUSJA
user profile image
Gość

8 stycznia 2018
a przykład g) i h) co z nimi ?
user profile image
Odrabiamy.pl

462

8 stycznia 2018

@Gość Cześć, czy na pewno przeglądasz dobre wydanie podręcznika? Najnowsza wersja jest dostępna tutaj: Link . Pozdrawiam

user profile image
Gracjan

3 stycznia 2018
Dzięki :):)
user profile image
Alex

16 października 2017
dzieki :):)
user profile image
Gość

17 grudnia 2017
@Gość dzieki
Informacje
Matematyka z plusem 6
Autorzy: M.Dobrowolska , M.Jucewicz, M.Karpiński, P.Zarzycki
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Kasia

3169

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Mnożenie pisemne
  1. Czynniki zapisujemy jeden pod drugim wyrównując do prawej.

    mnozenie1
     
  2. Mnożymy cyfrę jedności drugiego czynnika przez wszystkie cyfry pierwszego czynnika, a otrzymany wynik zapisujemy pod kreską, wyrównując do cyfry jedności. Gdy przy mnożeniu jednej z cyfr drugiego czynnika przez jedności, dziesiątki i setki drugiego czynnika wystąpi wynik większy od 9, to cyfrę jedności tego wyniku zapisujemy pod kreską, natomiast cyfrę dziesiątek przenosimy do dziesiątek lub setek i dodajemy go do wyniku następnego mnożenia.

    W naszym przykładzie:
    4•3=12 , czyli 2 wpisujemy pod cyframi jedności, a 1 przenosimy do dziesiątek, następnie: 4•1=4, ale uwzględniamy przeniesioną 1, czyli mamy 4+1=5 i 5 wpisujemy pod cyframi dziesiątek, następnie mamy 4•1=4 i 4 wpisujemy pod cyframi setek.

    mnozenie2
     
  3. Mnożymy kolejną cyfrę drugiego czynnika przez wszystkie cyfry pierwszego czynnika, a otrzymamy wynik zapisujemy pod poprzednim, wyrównując do cyfry dziesiątek.

    W naszym przykładzie:
    1•3=3 i 3 zapisujemy pod cyframi dziesiątek, następnie 1•1=1 i 1 wpisujemy pod cyframi setek, oraz 1•1=1 i 1 wpisujemy pod cyframi tysięcy.

    mnozenie3
     
  4. Po wykonaniu mnożeń, otrzymane dwa wyniki dodajemy do siebie według zasad dodawania pisemnego.

    mnozenie4
     
  5. W rezultacie wykonanych kroków otrzymujemy wynik mnożenia pisemnego. Iloczyn liczby 113 oraz 14 wynosi 1572.

Skala i plan

Przy wykonywaniu rysunków niektórych przedmiotów lub sporządzaniu map, planów musimy zmniejszyć rzeczywiste wymiary przedmiotów, aby rysunki zmieściły się na kartce. Są też rzeczy niewidoczne dla oka, które obserwujemy za pomocą mikroskopu, wówczas rysunki przedstawiamy w powiększeniu.
W tym celu stosujemy pewną skalę. Skala określa, ile razy dany obiekt został pomniejszony lub powiększony. Rozróżniamy zatem skale zmniejszające i zwiększające.

Skala 1:2 („jeden do dwóch”) oznacza, że przedstawiony obiekt jest dwa razy mniejszy od rzeczywistego, czyli jego wymiary są dwa razy mniejsze od rzeczywistych.

Skala 2:1 („dwa do jednego”) oznacza, że przedstawiony obiekt jest dwa razy większy od rzeczywistego, czyli jego wymiary są dwa razy większe od rzeczywistych.

Skala 1:1 oznacza, że przedstawiony obiekt jest taki sam jak rzeczywisty.

Przykład:

skala
 

Prostokąt środkowy jest wykonany w skali 1:1. Mówimy, że jest naturalnej wielkości. Prostokąt po lewej stronie został narysowany w skali 1:2, czyli jego wszystkie wymiary zostały zmniejszone dwa razy. Prostokąt po prawej stronie został narysowany w skali 2:1, czyli jego wszystkie wymiary zostały zwiększone dwa razy.

 

Przykłady na odczytywanie skali:

  • skala 1:50 oznacza zmniejszenie 50 razy
  • skala 20:1 oznacza zwiększenie 20 razy
  • skala 1:8 oznacza zmniejszenie 8 razy
  • skala 5:1 oznacza zwiększenie 5 razy
 

Plan to obraz niewielkiego obszaru, terenu, przedstawiony na płaszczyźnie w skali. Plany wykonuje się np. do przedstawienia pokoju, mieszkania, domu, rozkładu ulic w osiedlu lub mieście.

Mapa to podobnie jak plan obraz obszaru, tylko większego, przedstawiony na płaszczyźnie w skali (mapa musi uwzględniać deformację kuli ziemskiej). Mapy to rysunki terenu, kraju, kontynentu.

Skala mapy
Na mapach używa się skali pomniejszonej np. 1:1000000. Oznacza to, że 1 cm na mapie oznacza 1000000 cm w rzeczywistości (w terenie).

Przykłady na odczytywanie skali mapy
  • skala 1:500000 oznacza, że 1 cm na mapie to 500000 cm w rzeczywistości
  • skala 1:2000 oznacza, że 1 cm na mapie to 2000 cm w rzeczywistości
Zobacz także
Udostępnij zadanie