Matematyka

Zastąp litery odpowiednimi liczbami.a) √(x+3)=10 4.6 gwiazdek na podstawie 10 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Zastąp litery odpowiednimi liczbami.a) √(x+3)=10

5
 Zadanie

6
 Zadanie
7
 Zadanie
8
 Zadanie
9
 Zadanie
10
 Zadanie
11
 Zadanie
UWAGA! Oglądasz starą wersję książki. *Kilknij tutaj aby zobaczyć nową.*

`sqrt(x+3) = 10\ \ \ |(.)^2`

`(sqrt(x+3))^2= 10^2` 

`x+3=100` 

`x=97` 

 

`sqrt(4y) = 0,2\ \ \ |(.)^2`   

`(sqrt(4y))^2 = (0,2)^2` 

`4y=0,04` 

`y=0,01` 

 

`root(3)(x+5) = -1\ \ \ |(.)^3`  

`(root(3)(x+5))^3 = (-1)^3` 

`x+5=-1` 

`x=-6`

 

`root(3)(t/10) = 5\ \ \ |(.)^3`  

`(root(3)(t/10))^3 = 5^3` 

`t/10 = 125`

`t = 1250` 

DYSKUSJA
user profile image
Gość

0

2017-10-06
Dzieki za pomoc :)
user profile image
Gość

0

2017-10-12
Dzięki za pomoc :):)
Informacje
Matematyka z plusem 2
Autorzy: Z.Bolałek, M.Dobrowolska, M.Jucewicz, M.Karpiński, J.Lech,A.Mysior, K.Zarzycka
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Jakub

1357

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Wyłączenie całości z ułamka niewłaściwego

Jeśli ułamek jest niewłaściwy (czyli jego mianownik jest równy lub mniejszy od licznika) to możemy wyłączyć z niego całość, tzn. dzielimy (być może zresztą) licznik przez mianownik (tzn. sprawdzamy ile razy mianownik „zmieści się” z liczniku) i otrzymujemy w ten sposób liczbę naturalną, będącą całością (tzw. składnik całkowity) oraz resztę, która jest ułamkiem właściwym (tzw. składnik ułamkowy).

Przykład: $$9/4 = 2 1/4$$

Opis powyższego przykładu: Dzielimy 9 przez 4, czyli sprawdzamy ile razy 4 zmieści się w 9. Liczba 4 zmieści się 2 razy w liczbie 9, czyli otrzymujemy 2 i resztę 1 (bo $$2•4= 8$$, czyli do 9 brakuje 1, i ona jest naszą resztą).

Dzielenie pisemne
  1. Zapisujemy dzielną, nad nią kreskę, a obok, po znaku dzielenia, dzielnik. W naszym przykładzie podzielimy liczbę 1834 przez 14, inaczej mówiąc zbadamy ile razy liczba 14 „mieści się” w liczbie 1834.

    dzielenie1
     
  2. Dzielimy pierwszą cyfrę dzielnej przez dzielnik. Jeśli liczba ta jest mniejsza od dzielnika, to bierzemy pierwsze dwie lub więcej cyfr dzielnej i dzielimy przez dzielnik. Inaczej mówiąc, w dzielnej wyznaczamy taką liczbę, którą można podzielić przez dzielnik. Wynik dzielenia zapisujemy nad kreską, a resztę z dzielenia zapisujemy pod spodem (pod dzielną).

    W naszym przykładzie w dzielnej bierzemy liczbę 18 i dzielimy ją przez 14, czyli sprawdzamy ile razy 14 zmieści się w 18. Liczba 14 zmieści się w 18 jeden raz, jedynkę piszemy nad kreską (nad ostatnią cyfrą liczby 18, czyli nad 8). Następnie wykonujemy mnożenie 1•14=14 i wynik 14 wpisujemy pod liczbą 18, oddzielamy kreską i wykonujemy odejmowanie 18-14=4 i wynik 4 zapisujemy pod kreską.
    Opisane postępowanie możemy zapisać następująco: 18÷14=1 reszty 4.

    dzielenie2
     
  3. Do wyniku odejmowania opisanego w punkcie 2, czyli do otrzymanej reszty z dzielenia dopisujemy kolejną cyfrę dzielnej i wykonujemy dzielenie przez dzielnik. Tak jak poprzednio wynik zapisujemy nad kreską, a pod spodem resztę z tego dzielenia.
    W naszym przykładzie wygląda to następująco: do 4 dopisujemy cyfrę 3 (czyli kolejną cyfrę, która znajduje się za liczbą 18) i otrzymujemy liczbę 43, którą dzielimy przez dzielnik 14. Inaczej mówiąc sprawdzamy ile razy 14 zmieści się w 43. Liczba 14 zmieści się w 43 trzy razy, czyli 3 piszemy nad kreską (za 1), a następnie wykonujemy mnożenie 3•14=42i wynik 42 zapisujemy pod liczbą 43, oddzielamy kreską i wykonujemy odejmowanie 43-42=1 i wynik 1 zapisujemy pod kreską.
    Opisane postępowanie możemy zapisać: 43÷14=3 reszty 1.

    dzielenie2
     
  4. Analogicznie jak poprzednio do otrzymanej reszty dopisujemy kolejną cyfrę dzielnej i wykonujemy dzielenie przez dzielnik.
    W naszym przykładzie:
    do 1 dopisujemy ostatnią cyfrę dzielnej, czyli 4. Otrzymujemy liczbę 14, którą dzielimy przez dzielnik 14, w wyniku otrzymujemy 1 i wpisujemy ją nad kreską (po3). Następnie wykonujemy mnożenie 1•14=14 w wynik 14 zapisujemy pod 14, oddzielamy kreską i wykonujemy odejmowanie 14-14=0.
    Opisane postępowanie możemy zapisać 14÷14=1, czyli otrzymaliśmy dzielenie bez reszty, co kończy nasze dzielenie.

    dzielenie3
     
  5. Wynik dzielenia liczby 1834 przez 14 znajduje się nad kreską, czyli otrzymujemy ostatecznie iloraz 1834÷14=131.

Zobacz także
Udostępnij zadanie