Matematyka

Do pierwszego z danych wzorów podstaw drugi i uprość otrzymane wyrażenie 4.55 gwiazdek na podstawie 11 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Matematyka

Do pierwszego z danych wzorów podstaw drugi i uprość otrzymane wyrażenie

73
 Zadanie

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a)      

b)    

c)    

d)    

e)    

f)    

g)    

h)    

i)    

j)    

k)    

l)    

DYSKUSJA
klasa:
Informacje
Autorzy: M Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201704
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Prostokąt

Prostokąt to czworokąt, którego wszystkie kąty wewnętrzne są kątami prostymi.

Sąsiednimi bokami nazywamy te boki, które mają wspólny wierzchołek. W prostokącie każde dwa sąsiednie boki są prostopadłe.

Przeciwległymi bokami nazywamy te boki, które nie mają punktów wspólnych. W prostokącie przeciwległe boki są równoległe oraz mają równe długości.

Odcinki, które łączą dwa przeciwległe wierzchołki (czyli wierzchołki nie należące do jednego boku) nazywamy przekątnymi. Przekątne prostokąta mają równe długości oraz przecinają się w punkcie, który jest środkiem każdej przekątnej, to znaczy punkt ten dzieli przekątne na dwie równe części.

Wymiarami prostokąta nazywamy długości dwóch sąsiednich boków. Jeden bok nazywamy długością, a drugi szerokością prostokąta.
 

prostokat

Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom