Wyznacz podane wielkości ze wzoru - Zadanie 69: Matematyka z plusem 1. Zbiór zadań - strona 82
Matematyka
Wybierz książkę
Wyznacz podane wielkości ze wzoru 4.33 gwiazdek na podstawie 12 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Matematyka
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a)

b)

c)

d)

DYSKUSJA
klasa:
Select...
Informacje
Autorzy: M Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201704
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Suma ciągu arytmetycznego
Aby obliczyć sumę ciągu arytmetycznego potrzebujemy następujących danych:
  • Pierwszy wyraz: $a_1$
  • Ilość wyrazów, których sumę zamierzamy policzyć: $N$
  • Ostatni wyraz: $a_N$
Wzór na sumę wygląda następująco:

$S_N={a_1+a_N}/{2}×N$

Spotykana jest również inna odmiana tego wzoru:

$S_N={2a_1+(N-1)r}/2×N$

(pod $a_N$ pierwszego wzoru został podstawiony po prostu wzór na wartość dowolnego wyrazu: $a_n=a_1+(n-1)×r$)

Przykład:

Oblicz sumę pierwszych dziesięciu wyrazów ciągu arytmetycznego o różnicy $r=-2$ i trzecim wyrazie równym $a_3=4$ .

Potrzebujemy podstawy, zatem obliczmy $a_1$ ze wzoru na dowolny wyraz:

$a_3=a_1+(3-1)×r$

$4= a_1+2×(-2)$

$4=a_1-4$

$a_1=8$

Wiemy, że musimy mieć sumę 10 wyrazów, zatem $N=10$.

Pozostaje nam odnaleźć ostatni wyraz czyli $a_{10}$

Również użyjmy wzoru na dowolny wyraz: $a_{10}=a_1+(10-1)×r$

$a_{10}=8+9×(-2)$

$a_{10}=-10$

Posiadamy już wszystkie wartości do podstawienia ich do wzoru na sumę ciągu:

$a_1=8$

$N=10$

$a_{10}=-10$

$S_N={a_1+a_N}/{2}×N$

$S_N={8-10}/{2}×10$

$S_N={-2}/{2}×10=-10$

Zatem suma naszych wyrazów wynosi $-10$.

Uwaga!

Wszystkie użyte wzory zawarte w tym temacie znajdują się w karcie wzorów maturalnych.
Wzór na dowolny wyraz jest uniwersalnym wzorem, działa dla każdego ciągu arytmetycznego.
 
Kombinatoryka
Zadaniem tego działu jest nauczenie tzw. Kombinacji czyli łączenia kilku elementów lub zdarzeń w taki sposób, aby wyczerpać wszystkie dostępne możliwości. Musimy więc przedstawić wszystkie ustawienia.

Wypisanie:
Metoda wypisanie polega na rozpisaniu wszystkich możliwych sytuacji i policzeniu ich. Jest skuteczna przy małych liczbach zdarzeń, jednakże niektóre zadania mogą nawet dobijać do 1000 ustawień i więcej, a wtedy sama rozpiska zajęłaby pół matury. Jednakże warto omówić tę metodę - czasem rozpisanie tylko części przypadków pozwala nam wpaść na poprawne rozwiązanie.

Przykład:
Ile jest liczb dwucyfrowych mniejszych od 30 podzielnych przez 3.
Wypisujemy każdą z tych liczb: 3,6,9,12,15,18,21,24,27 ma być mniejsze od 30, więc samo 30 się nie kwalifikuje. Mamy więc 9 takich liczb.
Jednakże tak jak wspominałem liczba ustawień musi być mała, na większe liczby pomoże reguła mnożenia.

Reguła Mnożenia:
Polega na podzieleniu zdarzeń na etapy, wykonujemy jeden z nich na kilka sposobów, a drugi również na kilka itd.
Czyli np.:
Pierwszy na 5 sposobów
Drugi na 4 sposoby
Więc wszystkie sytuacje przedstawimy na $5*4=20$ sposobów.

Przykład:
Ile jest liczb dwucyfrowych, w których obie cyfry są mniejsze od 4?
Dzielimy tu na etapy:
1. ustaw cyfry dziesiątek:
Możliwe cyfry dziesiątek to $1,2,3,4$ - 4 cyfry
2. ustaw cyfry jedności:
Możliwe cyfry dziesiątek to $0,1,2,3,4$ - 5 cyfr
Zatem takich liczb jest $4×5=20$

Reguła dodawania:
Stosujemy ją, jeśli musimy wybrać tylko jedną z kilku decyzji, czyli stosujemy „albo”, w przypadku mnożenia było to wymuszenie czyli „i” tutaj jest alternatywa.

Przykład:
Zamek szyfrowy jest strzeżony przez dwie wieże, jedna z nich jest zamknięta kodem dwucyfrowym nieparzystym, druga kodem dwucyfrowym parzystym. Wystarczy złamać kod na jednej wieży, aby wejść. Na ile sposobów możemy wejść do zamku?

Mamy tutaj jednocześnie regułę mnożenia i dodawania.
Najpierw mnożenia, wieża z kodem parzystym składa się z 2 cyfr.
Możliwe dziesiątki: $2,4,6,8$
Możliwe jedności: $0,2,4,6,8$
Zatem z reguły mnożenia kombinacji jest 5×4=20
Tak samo w wieży nieparzystej.
Możliwe dziesiątki: $1,3,5,7,9$
Możliwe jedności: $1,3,5,7,9$
Z reguły mnożenia kombinacji jest 5×5=25
Z racji, że mamy „albo” (ta wieża albo tamta) sumujemy nasze wyliczone kombinacje:
$25+20=45$
Uwaga: "albo" to alternatywa wykluczająca, co oznacza, że nie mogę przejść przez obie wieże naraz - to logiczne.
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom