Matematyka

Sprawdź, które z podanych liczb są miejscami zerowymi funkcji f: 4.6 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 1 Klasa
  3. Matematyka

Sprawdź, które z podanych liczb są miejscami zerowymi funkcji f:

8.95
 Zadanie

8.96
 Zadanie
8.97
 Zadanie
8.98
 Zadanie
8.99
 Zadanie
8.100
 Zadanie
8.101
 Zadanie

Miejscem zerowym funkcji liczbowej nazywamy taki argument, dla którego wartość funkcji wynosi 0.


a) Wyznaczamy

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup pakiet Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Marcin Kurczab, Elżbieta Kurczab, Elżbieta Świda
Wydawnictwo: Pazdro
Rok wydania:
ISBN: 9788375940794
Autor rozwiązania
user profile

Dagmara

13210

Nauczyciel

Wiedza
Prostopadłościan i sześcian

Prostopadłościan to figura przestrzenna, której kształt przypomina pudełko lub akwarium.

Prostopadłościan

  • Każda ściana prostopadłościanu jest prostokątem.

  • Każdy prostopadłościan ma 6 ścian, 8 wierzchołków i 12 krawędzi.

  • Dwie ściany mające wspólną krawędź nazywamy prostopadłymi.

  • Dwie ściany, które nie mają wspólnej krawędzi, nazywamy równoległymi.

  • Każda ściana jest prostopadła do czterech ścian oraz równoległa do jednej ściany.


Z każdego wierzchołka wychodzą trzy krawędzie – jedną nazywamy długością, drugą – szerokością, trzecią – wysokością prostopadłościanu i oznaczamy je odpowiednio literami a, b, c.

Długości tych krawędzi nazywamy wymiarami prostopadłościanu.

a – długość prostopadłościanu, b – szerokość prostopadłościanu, c - wysokość prostopadłościanu.


Prostopadłościan, którego wszystkie ściany są jednakowymi kwadratami nazywamy sześcianem.

Wszystkie krawędzie sześcianu mają jednakową długość.

kwadrat

a - długość krawędzi sześcianu

Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.
     

    proste-rownlegle
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom