W tabeli podano liczbę mieszkań (w tysiącach... - Zadanie 2.105: Matematyka 1. Poziom podstawowy - strona 41
Matematyka
Wybierz książkę
W tabeli podano liczbę mieszkań (w tysiącach... 4.6 gwiazdek na podstawie 10 opinii
  1. Liceum
  2. 1 Klasa
  3. Matematyka

W tabeli podano liczbę mieszkań (w tysiącach...

2.103
 Zadanie
2.104
 Zadanie

2.105
 Zadanie

2.106
 Zadanie

 

Odp. Liczba mieszkań oddanych do użytku w roku  wzrosła o około   w porównaniu

z rokiem  


 

Odp. W   roku oddano o około  mniej mieszkań niż w roku  


 liczba mieszkań w  roku

Wiemy, że liczba mieszkań w  roku stanowiła  liczby mieszkań z  roku. Stąd:

 

 

 

Odp. W  roku oddano do użytku  mieszkań.


 liczba mieszkań oddanych do użytku w roku  

W roku   oddano o  miej mieszkań niż w roku  czyli  

Mamy więc:

 

 

 

 

Odp. W  roku oddano do użytku około  mieszkań.

DYSKUSJA
opinia do odpowiedzi undefined
Ula

22 października 2018
dzieki!
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Marcin Kurczab, Elżbieta Kurczab, Elżbieta Świda
Wydawnictwo: OE Pazdro
Rok wydania:
ISBN: 9788375940763
Autor rozwiązania
user profile

Dagmara

14522

Nauczyciel

Wiedza
Porównywanie ułamków dziesiętnych

Aby ustalić, który z dwóch ułamków dziesiętnych jest większy, wystarczy porównać kolejno rzędy, zaczynając od najwyższego. Oznacza to, że porównujemy kolejno cyfry z których zbudowany jest ułamek dziesiętny, czyli zaczynamy od cyfr części całkowitej, a później przechodzimy to porównywania cyfr części dziesiętnych.

W praktyce porównywanie ułamków dziesiętnych odbywa się następująco:
  • Najpierw porównujemy części całkowite, jeżeli nie są równe, to mniejszy jest ułamek o mniejszej części całkowitej;

  • Jeżeli obie części całkowite są równe, to porównujemy ich części dziesiętne. Jeżeli części dziesiętne nie są równe, to mniejszy jest ułamek o mniejszej części dziesiętnej;

  • Gdy części dziesiętne są równe, to porównujemy ich części setne, tysięczne itd., aż do uzyskania odpowiedzi.

  Zapamiętaj

Gdy na końcu ułamka dziesiętnego dopisujemy lub pomijamy zero, to jego wartość się nie zmienia.

Przykłady:
$0,34=0,340=0,3400=0,34000=...$
$0,5600=0,560=0,56$

W związku z powyższą uwagą, jeżeli w czasie porównywania ułamków w którymś zabraknie cyfr po przecinku, to należy dopisać odpowiednią liczbę zer.
 

Przykład: Porównajmy ułamki 5,25 i 5,23.
Przed porównywaniem ułamków wygodnie jest zapisać porównywane liczby jedna pod drugą, ale tak by zgadzały się rzędy, czyli przecinek pod przecinkiem.

porownanie1
Widzimy, że w porównywanych ułamkach części jedności są takie same, części dziesiętne także są równe, natomiast w rzędzie części setnych 5>3, zatem ułamek 5,25 jest większy od 5,23. Zatem 5,25>5,23.

Przykład: Porównajmy ułamki 0,8 i 0,81.
Zapisujemy ułamki jeden pod drugim, tak aby zgadzały się rzędy, czyli przecinek pod przecinkiem. Ponadto dopisujemy 0 w ułamku 0,8.

porownanie2

Widzimy, że w porównywanych ułamkach części jedności są takie same, części dziesiętne także są równe, natomiast w rzędzie części setnych 0<1, zatem ułamek 0,81 jest większy od 0,8. Zatem 0,81>0,8.

Wzajemne położenie odcinków

Dwa odcinki mogą być względem siebie prostopadłe lub równoległe.

  1. Odcinki prostopadłe – odcinki zawarte w prostych prostopadłych – symboliczny zapis $AB⊥CD$.

    odcinkiprostopadle
     
  2. Odcinki równoległe – odcinki zawarte w prostych równoległych – symboliczny zapis $AB∥CD$.

    odicnkirownolegle
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2693ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA6646WIADOMOŚCI
NAPISALIŚCIE734KOMENTARZY
komentarze
... i8420razy podziękowaliście
Autorom