Matematyka

Matematyka wokół nas 5 (Podręcznik, WSiP)

Podaj liczbę mieszkańców każdego z miasta i liczby uporządkuj malejąco 4.64 gwiazdek na podstawie 11 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Podaj liczbę mieszkańców każdego z miasta i liczby uporządkuj malejąco

10
 Zadanie

11
 Zadanie

12
 Zadanie
13
 Zadanie
14
 Zadanie
Sprawdź.1
 Zadanie
Sprawdź.2
 Zadanie
Sprawdź.3
 Zadanie

Białystok 291 000

Braniewo 18 300

Ełk 55 000

Giżycko 30 000

Kętrzyn 29 000

Olsztyn 173 000

291 000> 173 000> 55 000> 30 000> 29 000> 18 300

DYSKUSJA
Informacje
Matematyka wokół nas 5
Autorzy: Helena Lewicka, Marianna Kowalczyk
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Kasia

3130

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Wyrażenie dwumianowane

Wyrażenia dwumianowe to wyrażenia, w których występują dwie jednostki tego samego typu.

Przykłady: 5 zł 30 gr, 2 m 54 cm, 4 kg 20 dag.

Wyrażenia dwumianowe możemy zapisać w postaci ułamka dziesiętnego.

Przykład: 3 m 57 cm = 3,57 cm , bo 57 cm to 0,57 m.

Jednostki:

  • 1 cm = 10 mm; 1 mm = 0,1 cm
  • 1 dm = 10 cm; 1 cm = 0,1 dm
  • 1 m = 100 cm; 1 cm = 0,01 m
  • 1 m = 10 dm; 1 dm = 0,1 m
  • 1 km = 1000 m; 1 m = 0,001 km
  • 1 zł = 100 gr; 1 gr = 0,01 zł
  • 1 kg = 100 dag; 1 dag = 0,01 kg
  • 1 dag = 10 g; 1 g = 0,1 dag
  • 1 kg = 1000 g; 1 g = 0,001 kg
  • 1 t = 1000 kg; 1 kg = 0,001 t

Przykłady zamiany jednostek:

  • 10 zł 80 gr = 1000 gr + 80 gr = 1080 gr
  • 16 gr = 16•0,01zł = 0,16 zł
  • 1 zł 52 gr = 1,52 zł
  • 329 gr = 329•0,01zł = 3,29 zł
  • 15 kg 60 dag = 1500dag + 60dag = 1560 dag
  • 23 dag = 23•0,01kg = 0,23 kg
  • 5 kg 62 dag = 5,62 kg
  • 8 km 132 m = 8000 m+132 m = 8132 m
  • 23 cm 3 mm = 230 mm + 3 mm = 233 mm
  • 39 cm = 39•0,01m = 0,39 m
Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $$0,253•10= 2,53$$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $$3,007•100= 300,7$$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $$0,024•1000= 24$$ ← przesuwamy przecinek o trzy miejsca w prawo
Zobacz także
Udostępnij zadanie