Matematyka

Matematyka wokół nas 5 (Podręcznik, WSiP)

Wartością wyrażenia ( 3 1/2:2 4/5-3/4)*2 2/3 jest 4.58 gwiazdek na podstawie 12 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

`(3 1/2:2 4/5-3/4) * ` `2 2/3=((strike(7)^1)/2*5/(strike(14)^2)-3/4)*2 2/3=(1/2*5/2-3/4)*2 2/3=(5/4-3/4)*2 2/3=``2/4*2 2/3=1/(strike(2)^1)*(strike(8)^4)/3=4/3=1 1/3`

` `

Prawidłowa odpowiedź: A

DYSKUSJA
user profile image
ak.mak

7 lutego 2018
Dzięki za pomoc
user profile image
Gość

1

19 grudnia 2017
dzinki
user profile image
Nina

1

1 grudnia 2017
Dzięki za pomoc!
Informacje
Matematyka wokół nas 5
Autorzy: Helena Lewicka, Marianna Kowalczyk
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Kasia

4696

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $$ P=2 cm•4 cm=8 cm^2 $$
    Pole tego prostokąta jest równe 8 $$cm^2$$.

Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Udostępnij zadanie