Matematyka

Wyobraź sobie, że z urny, w której są cztery kule... 4.29 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 8 Klasa
  3. Matematyka

Wyobraź sobie, że z urny, w której są cztery kule...

1
 Zadanie
2
 Zadanie

3
 Zadanie

1 możliwość: 

wylosowaliśmy 6 i 7

 

 

2 możliwość:

wylosowaliśmy 6 i 8

 

 

3 możliwość:

wylosowaliśmy 6 i 9

 

 

4 możliwość:

wylosowaliśmy 7 i 6

 

 

5 możliwość:

wylosowaliśmy 7 i 8

 

 

6 możliwość:

wylosowaliśmy 7 i 9

 

 

7 możliwość:

wylosowaliśmy 8 i 6

 

 

8 możliwość:

wylosowaliśmy 8 i 7

 

 

9 możliwość:

wylosowaliśmy 8 i 9

 

 

10 możliwość:

wylosowaliśmy 9 i 6

 

 

11 możliwość:

wylosowaliśmy 9 i 7

 

 

12 możliwość:

wylosowaliśmy 9 i 8

 

 

Odp. Możliwe do wylosowania sumy to: 13, 14, 15, 16, 17.

 

DYSKUSJA
klasa:
Informacje
Autorzy: Małgorzata Dobrowolska, Marta Jucewicz, Marcin Karpiński
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374209663
Autor rozwiązania
user profile

Magda

5575

Nauczyciel

Matematyk z 22-letnim doświadczeniem, Uwielbia sport, przede wszystkim narciarstwo biegowe.

Wiedza
Kolejność wykonywania działań

Przy rozwiązywaniu działań najważniejsze jest zachowanie odpowiedniej kolejności wykonywania działań.


Kolejność wykonywania działań:

  1. Działania w nawiasach

  2. Potęgowanie

  3. Mnożenie i dzielenie (jeżeli w działaniu występuje zarówno dzielenie jak i mnożenie, to działania wykonujemy w kolejności w jakiej są zapisane, czyli od lewej do prawej strony).
    Przykład`16:2*5=8*5=40` 

  4. Dodawanie i odejmowanie (jeżeli w działaniu występuje zarówno odejmowanie jak i dodawanie, to działania wykonujemy w kolejności w jakiej są zapisane, czyli od lewej strony do prawej).
    Przykład`24-6+2=18+2=20` 


Przykład:

`(45-9*3)-4=(45-27)-4=18-4=14` 

Porównywanie ułamków dziesiętnych

Aby ustalić, który z dwóch ułamków dziesiętnych jest większy, wystarczy porównać kolejno rzędy, zaczynając od najwyższego. Oznacza to, że porównujemy kolejno cyfry z których zbudowany jest ułamek dziesiętny, czyli zaczynamy od cyfr części całkowitej, a później przechodzimy to porównywania cyfr części dziesiętnych.

W praktyce porównywanie ułamków dziesiętnych odbywa się następująco:
  • Najpierw porównujemy części całkowite, jeżeli nie są równe, to mniejszy jest ułamek o mniejszej części całkowitej;

  • Jeżeli obie części całkowite są równe, to porównujemy ich części dziesiętne. Jeżeli części dziesiętne nie są równe, to mniejszy jest ułamek o mniejszej części dziesiętnej;

  • Gdy części dziesiętne są równe, to porównujemy ich części setne, tysięczne itd., aż do uzyskania odpowiedzi.

  Zapamiętaj

Gdy na końcu ułamka dziesiętnego dopisujemy lub pomijamy zero, to jego wartość się nie zmienia.

Przykłady:
$$0,34=0,340=0,3400=0,34000=...$$
$$0,5600=0,560=0,56$$

W związku z powyższą uwagą, jeżeli w czasie porównywania ułamków w którymś zabraknie cyfr po przecinku, to należy dopisać odpowiednią liczbę zer.
 

Przykład: Porównajmy ułamki 5,25 i 5,23.
Przed porównywaniem ułamków wygodnie jest zapisać porównywane liczby jedna pod drugą, ale tak by zgadzały się rzędy, czyli przecinek pod przecinkiem.

porownanie1
Widzimy, że w porównywanych ułamkach części jedności są takie same, części dziesiętne także są równe, natomiast w rzędzie części setnych 5>3, zatem ułamek 5,25 jest większy od 5,23. Zatem 5,25>5,23.

Przykład: Porównajmy ułamki 0,8 i 0,81.
Zapisujemy ułamki jeden pod drugim, tak aby zgadzały się rzędy, czyli przecinek pod przecinkiem. Ponadto dopisujemy 0 w ułamku 0,8.

porownanie2

Widzimy, że w porównywanych ułamkach części jedności są takie same, części dziesiętne także są równe, natomiast w rzędzie części setnych 0<1, zatem ułamek 0,81 jest większy od 0,8. Zatem 0,81>0,8.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom