Matematyka

Sporządź kopię rysunku ostrosłupa 4.84 gwiazdek na podstawie 6 opinii
  1. Szkoła podstawowa
  2. 8 Klasa
  3. Matematyka

Sporządź kopię rysunku ostrosłupa

1
 Zadanie

2
 Zadanie
3
 Zadanie
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Małgorzata Dobrowolska, Marta Jucewicz, Marcin Karpiński
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374209663
Autor rozwiązania
user profile

Monika

23753

Nauczyciel

Wiedza
Ostrosłup

Ostrosłupem nazywamy taki wielościan, którego jedna ściana jest dowolnym wielokątem (podstawa), a pozostałe ściany (ściany boczne) są trójkątami o wspólnym wierzchołku.

img07
 

Ostrosłupy również mogą być:

  • proste - wtedy każda krawędź boczna jest równej długości,
  • prawidłowe - wtedy podstawą jest wielokąt foremny, a jego spodek wysokości pokrywa się ze środkiem okręgu opisanego na jego podstawie. Tak jak wcześniej, wszystkie ostrosłupy prawidłowe są proste (ale nie odwrotnie).

Wysokością ostrosłupa nazywamy najkrótszy odcinek, łączący wierzchołek z płaszczyzną podstawy. Na czerwono został oznaczony kąt nachylenia krawędzi ściany do podstawy.

img08
 
Ostrosłupy

Ostrosłup składa się z jednej podstawy, ścian bocznych i wierzchołka ostrosłupa. Punkt na podstawie, na który pada wysokość nazywamy spodkiem wysokości.

  Zobacz w programie GeoGebra

 

ostroslup

Ostrosłup, który ma w podstawie wielokąt foremny nazywamy ostrosłupem prawidłowym.

Ostrosłup prawidłowy trójkątny nosi również nazwę czworościan foremny. Wszystkie jego ściany są w kształcie trójkątów równobocznych.

Objętość ostrosłupa:

$$V=1/3 P_p×H$$

$$V$$ -> objętość ostrosłupa

$$P_p$$ -> pole podstawy

$$H$$ -> wysokość ostrosłupa

 

Pole powierzchni całkowitej ostrosłupa:

$$P_c=P_p+P_b$$

$$Pc$$ -> pole powierzchni całkowitej

$$P_p$$ -> pole podstawy

$$P_b$$ -> pole powierzchni bocznej (suma pól wszystkich ścian bocznych)

 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom