Matematyka

Zaznacz punkt symetryczny... 4.6 gwiazdek na podstawie 5 opinii
  1. Szkoła podstawowa
  2. 8 Klasa
  3. Matematyka

Zaznacz punkt symetryczny...

2
 Zadanie
3
 Zadanie

4
 Zadanie

DYSKUSJA
klasa:
Informacje
Autorzy: Jacek Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374209656
Autor rozwiązania
user profile

Magda

5608

Nauczyciel

Matematyk z 22-letnim doświadczeniem, Uwielbia sport, przede wszystkim narciarstwo biegowe.

Wiedza
Symetria osiowa (względem osi współrzędnych)
Czyl odbicie wykresu względem osi Y lub osi X. Jak się zachowa wzór przy takiej transformacji?

Odbicie względem osi X: $$-f(x)$$

Odbicie względem osi Y: $$f(-x)$$

Weźmy ponownie nasz bazowy wykres:

wyk1
 Przekształćmy go najpierw względem osi X. Symetria osiowa względem osi X polega na znalezieniu dla każdego punktu jego odbicia po przeciwnej stronie osi X, takiego że odcinek łączący wyjściowy punkt i jego odbicie jest prostopadły do osi X i przecina ją w połowie. Brzmi skomplikowanie, ale chodzi o zwykłe odbicie.

wyk4

Teraz musimy jeszcze odbić względem osi Y czyli $$f(-x)$$:

wyk5

Uwaga!


Zazwyczaj w zadaniach określone zostaną złożone transformacje, czyli wykorzystanie wektora przesunięcia i symetrii osiowej jednocześnie, a wektor będzie przesuwał i po osi x i po osi y. Dlatego dobrze jest najpierw rozpoznać co zaszło.


Najlepiej pokazać to na jeszcze jednym przykładzie:

Jakaś nieznana funkcja bazowa f(x) została przetransformowana do innej funkcji $$g(x)=2x+1$$ przy pomocy wektora [2;5]. Znajdź tę bazową funkcję.
Zrobimy to zadanie na dwa sposoby:

Sposób 1, przez sprowadzenie do postaci f(x-a)+b:

Szukamy tutaj bazowego wykresu. Skoro zawsze transformacją o wektor było f(x-a)+b gdzie a i b to dowolne liczby, to tutaj nasze $$a=2$$ oraz $$b=5$$. Mamy więc przesunięcie o 2 w prawo i 5 w górę, a nasz bazowy wykres to taki, który zostanie po usunięciu a i b. Musimy doprowadzić nasze g(x) do postaci $$g(x)=f(x-2)+5$$. W tym celu musimy wydzielić w funkcji człon x-2: $$g(x)=2x+1=2(x-2)+2*2+1=2(x-2)+5$$. Teraz "usuwamy" a i b (wstawiamy zamiast nich zera): $$f(x)=2(x-0)+0=2x$$

Sposób 2, przez użycie wektora przeciwnego:

W poprzedniej metodzie "usunęliśmy" a i b, czyli wstawiliśmy zamiast nich zera. Ten sam efekt uzyskalibyśmy odejmując a i b w odpowiednich miejscach, czyli transformując o wektor [-2;-5]. Zresztą czego innego można się spodziewać? Skoro przesunęliśmy bazową funkcję o wektor [a;b], odzyskamy ją, przesuwając to co powstało w drugą stronę, czyli o wektor przeciwny [-a;-b]. Zróbmy to więc! Nasze "to co powstało" to $$g(x)=2x+1$$. Przesuńmy je o [-2;-5]:

$$f(x)=g(x-(-2))+(-5)=g(x+2)-5=2(x+2)+1-5=2x+4+1-5=2x$$
Symetria w układzie współrzędnych
Jedną z operacji symetrii jest odbicie jakiegoś obiektu względem innego obiektu (w naszym przypadku środka układu współrzędnych lub jednej z osi). Odbicie polega wtedy na zachowaniu odległości względem osi lub środka układu. Odległość ta jest mierzona na linii
- prostopadłej do osi (gdy odbijam względem osi)
- Przecinającej środek układu (gdy odbijam względem środka układu)

Zadaniem tego działu będzie zobrazowanie takiego odbicia, a także pokazanie jak się zachowują współrzędne w takiej sytuacji.


Symetria względem osi

Osią będziemy nazywać oś X lub Y i to względem niej będziemy opracowywać symetrię. Narysujmy układ współrzędnych.

Przykład:
symetrie1
Został na nim zaznaczony punkt A, odczytujemy współrzędne A(1;2).
Odbijmy go względem osi X.
Zauważcie, że czerwony odcinek jest równa długością niebieskiemu:

symetrie2
Odczytajmy współrzędne punktu A’ pamiętając, że odcinek AA' jest pod kątem prostym do osi X. Nasz A’ ma obecnie A’(1,-2).

Teraz weźmy oś Y i ten sam punkt:
symetrie3
Również mamy równą odległość od osi, punkt A’’ (-1;2).


Symetria względem środka układu:
W tym wypadku przecinamy naszą linią punkt, który jest środkiem układu, więc nie ma mowy o kącie prostym, po prostu doprowadzamy linię do tego punktu, a potem taką samą długość za nim. Na tym samym przykładzie:

symetrie4
Widzimy, że współrzędne A’’’ to (-1;-2).

tab1

Jak widać przy symetrii względem osi X wartość Y zmienia się na przeciwną, przy symetrii względem osi Y wartość X zmienia się na przeciwną, natomiast przy symetrii przez środek układu obie wartości zmieniają się na przeciwne.

 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom