Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Matematyka

Matematyka 8. Ćwiczenia podstawowe (Zeszyt ćwiczeń, GWO)

Oblicz długość boku kwadratu, którego przekątna ma długość d. 4.6 gwiazdek na podstawie 5 opinii
  1. Szkoła podstawowa
  2. 8 Klasa
  3. Matematyka

Oblicz długość boku kwadratu, którego przekątna ma długość d.

1
 Zadanie
2
 Zadanie

3
 Zadanie

Wzór na długość przekątnej kwadratu ma postać:
`d=asqrt{2}` 
gdzie a to długość boku kwadratu


`a) \ d=6` 

`6=asqrt{2} \ \ \ \ \ \ \ \ \ \ \ |:sqrt{2}` 



`a=6/sqrt{2}=6/sqrt{2}*sqrt{2}/sqrt{2}=(6sqrt{2})/(sqrt{2}*sqrt{2})=(6sqrt{2})/2=3sqrt{2}` 
`ul(ul( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))` 


`b) \ d=sqrt{3}`     

`sqrt{3}=asqrt{2} \ \ \ \ \ \ \ \ \ \ \ |:sqrt{2}` 

`a=sqrt{3}/sqrt{2}=sqrt{3}/sqrt{2}*sqrt{2}/sqrt{2}=(sqrt{3}*sqrt{2})/(sqrt{2}*sqrt{2})=sqrt{6}/2` 
`ul(ul( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))` 


`c) \ d=7sqrt{2}` 

`7sqrt{2}=asqrt{2} \ \ \ \ \ \ \ \ \ \ |:sqrt{2}` 

`a=(7strike(sqrt{2})^1)/strike(sqrt{2})^1=7`  

DYSKUSJA
Informacje
Autorzy: Jacek Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 978 83 7420 965 6
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Przekątna kwadratu

Dzięki znajomości twierdzenia Pitagorasa jesteśmy w stanie obliczyć długość przekątnej kwadratu znając długość jego boku.

przekatna

`a`  - długość boku kwadratu 

`d`  - długość przekątnej kwadratu 

Korzystając z twierdzenia Pitagorasa mamy: 
`a^2+a^2=d^2`  
`2a^2=d^2`  
`d=sqrt{2a^2}` 
`d=sqrt{2}*sqrt{a^2}`
`d=asqrt{2}` 

Przekątna kwadratu o boku długości `a` ma długość:

`d=asqrt{2}` 

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom