Matematyka

Rozwiąż równania: 4.6 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka

 

 

 

 

 

 

 

Nie wyznaczaliśmy dziedziny, więc należy teraz sprawdzić, czy po podstawieniu otrzymanych rozwiązań

do równania początkowego otrzymamy równość.

Dla  

 

Dla  

 

Zatem rozwiązaniem jest tylko  

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
user avatar
Malwina

24 października 2018
Dziękuję!
user avatar
Małgosia

19 października 2018
dzieki!
user avatar
Adrianna

11 października 2018
dzieki :):)
user avatar
Emilia

15 września 2018
Dziękuję!
klasa:
Informacje
Autorzy: Marcin Kurczab, Elżbieta Kurczab, Elżbieta Świda
Wydawnictwo: OE Pazdro
Rok wydania:
ISBN: 9788375940800
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Postacie funkcji kwadratowej
Tutaj musimy się nauczyć kilku form funkcji kwadratowej, wbrew pozorom część z nich już używaliśmy. Wyróżniamy 3 postaci funkcji kwadratowej:

Pierwsza ogólna, czyli doskonale nam znana:

$$y=ax^2+bx+c$$

Druga iloczynowa, czyli to co uzyskujemy przy rozwiązaniu funkcji kwadratowej:

$$y=a(x-x_1)(x-x_2)$$

Gdzie $$x$$ z indeksem dolnym to jedno z rozwiązań

Uwaga!

Pamiętaj, że w postaci iloczynowej wszystko jest mnożone przez współczynnik a.

Ostatnia kanoniczna jest zapisywana przy użyciu wierzchołka paraboli:

$$y=a(x-p)^2+q$$

Jak widać łatwo możemy znaleźć wszystkie pozostałe wzory mając tylko jeden. Właśnie tym się teraz zajmiemy.

Przykład:

Wyznacz postać kanoniczną funkcji $$y=x^2+4x+4$$.

No to analizujemy czego nam potrzeba:

$$a(x-p)^2+q$$ Zmienną a już mamy, a=1, pozostaje nam obliczyć dwie pozostałe.

Korzystamy z wzoru na współrzędną P

$$p={-b}/{2a}$$

I obliczamy

$$p={-4}/{2}=-2$$

Teraz Q, ale do Q potrzebujemy obliczyć deltę, a więc

$$∆=b^2-4ac$$

$$∆=4^2-4*1*4$$

$$∆=16-16$$

$$∆=0$$

No to liczymy Q

$$Q={-∆}/{4a}

Skoro delta to 0

$$Q=0$$

Zatem postać kanoniczna

$$y=a(x-p)^2+q$$

$$y=(x+2)^2+0$$

$$y=(x+2)^2$$

Teraz czas na drugi przykład:

Przykład:

Znajdź wzór ogólny funkcji

$$y=2(x+1)^2+1$$

Widać, że to postać kanoniczna, a szukamy postaci ogólnej, czyli:

$$y=ax^2+bx+c$$

Zobaczmy co my tu mamy:

$$y=a(x-p)^2+q$$

$$y=2(x+1)^2+1$$

$$a=2$$

$$p=-1$$ (wg wzoru jest znak minus, a mamy plus)

$$q=1$$

Potrzebujemy a,b,p

Skorzystajmy z wzoru na współczynnik p, aby obliczyć b:

$$p={-b}/{2a}$$

Podstawiamy posiadane wartości, czyli p i a.

$$-1={-b}/{2×2}$$

I obliczamy

$${-1}={-b}/{4}$$ $$|×4$$

$$-4=-b$$

$$b=4$$

Pozostaje nam c i oczywiście do tego musimy użyć Q

$$Q={-∆}/{4a}$$

Podstawiamy:

$$1=-{b^2-4ac}/{4×2}$$

I liczymy

$$1=-{4^2-4×2×c}/8 $$

$$1=-{16-8c}/8$$

$$1=-(2-c)$$

$$1=-2+c$$

$$c=3$$

Zatem wzór to:

$$y=2x^2+4x+3$$

Ciekawostka: to zadanie dało się rozwiązać dużo prościej, wystarczyło uprościć wzór korzystając ze wzoru skróconego mnożenia:

$$y=2(x+1)^2+1=2(x^2+2x+1)+1=2x^2+4x+2+1=2x^2+4x+3$$

Wynik dało się więc uzyskać w jednej linijce! Dlatego warto przed rozwiązaniem zadania zastanowić się, jak najprościej tego dokonać. Pozwoli to zaoszczędzić trochę czasu na maturze.
 

Uwaga!

Wszystkie użyte tu wzory są zawarte w karcie wzorów na maturze.
Warto zapoznać się z wzorami Viete’a, które ułatwiają przekształcenia.
 
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom