Matematyka

Matematyka z kluczem 4 (Zbiór zadań, Nowa Era)

Pewna liczba ma taką własność, że jeśli się od niej odejmie 14,... 4.4 gwiazdek na podstawie 5 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Matematyka

Pewna liczba ma taką własność, że jeśli się od niej odejmie 14,...

11
 Zadanie
12
 Zadanie
13
 Zadanie

14
 Zadanie

15
 Zadanie
16
 Zadanie
17
 Zadanie
18
 Zadanie

Oznaczmy szukaną liczbę jako  

wiemy, że:

 oraz  

zatem:

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Jerzy Janowicz
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326731761
Autor rozwiązania
user profile

Ola

24073

Nauczyciel

Wiedza
Potęgowanie liczb całkowitych

Iloczyn jednakowych czynników można przedstawić w postaci potęgi.

potegowanie1

Symbol $$a^n$$ oznacza n-krotne mnożenie liczby a przez siebie; czyta się go a podniesione do n-tej potęgi, a do n-tej potęgi, a do potęgi n-tej.

potegowanie2
 

Przykłady:

  • $$3•3= 3^2$$ ← czytamy: 3 do potęgi drugiej lub druga potęga liczby 3,
  • $$5•5•5= 5^3$$ ← czytamy: 5 do potęgi trzeciej lub trzecia potęga liczby 5,
  • $$(-1)•(-1)•(-1)•(-1)= (-1)^4$$ ← czytamy: -1 do potęgi czwartej lub czwarta potęga liczby -1.


Dowolna liczba podniesiona do potęgi pierwszej to ta sama liczba → $$a^1 = a$$,

Zerowa potęga dowolnej liczby jest zawsze liczbą 1 → $$a^0 = 1$$.

  Uwaga

Zero podniesione do zerowej potęgi jest nieokreślone (jest niewykonalne).

Przykłady:

  • $$5^0 = 1$$
  • $$(-8)^0 = 1$$
  • $$0^2 = 0$$
  • $$(-12)^1 = -12$$

Drugą potęgę liczby a nazywamy także kwadratem liczby a i zapisujemy $$a^2$$

Trzecią potęgę liczby a nazywamy także sześcianem liczby a i zapisujemy $$a^3$$
 

  • Dowolna liczba (dodatnia lub ujemna) podniesiona do parzystej potęgi będzie zawsze liczbą dodatnią.

    Przykłady:

    • $$(−3)^4 = 81$$
    • $$2^2 = 4$$
  • Liczba ujemna podniesiona do potęgi nieparzystej będzie zawsze liczba ujemną.

    Przykład:

    • $$(−2)^3 = (−8)$$
Potęga o wykładniku naturalnym

Potęga to wielokrotne pomnożenie przez siebie takiego samego czynnika.


Potęgę liczby a o wykładniku n oznaczamy symbolem `a^n`, gdzie a to podstawa potęgi, n to wykładnik potęgi.  

Powyższa potęga oznacza, że dokonamy n - krotnego mnożenie czynnika a.

`a^n=#underbrace(a*a*...*a)_("n czynników")` 

Przykłady:

  • `3^4=3*3*3*3=81` 

  • `2^3=2*2*2=8`  

Gdy liczbę dodatnią lub ujemną podnosimy do potęgi parzystej, wówczas wynikiem będzie zawsze liczba dodatnia.

Gdy wykładnikiem potęgi liczby ujemnej będzie liczba nieparzysta to wynik będzie zawsze ujemny.

Przykłady:

  • `(-3)^6=3^6` 

  • `(-6)^5=-6^5`  

  • `(-1/2)^4=(1/2)^4` 

  • `(-1/7)^3=-(1/7)^3` 

Gdy podnosimy ułamek zwykły do danej potęgi, to wykonujemy oddzielnie potęgowanie dla licznika i mianownika. 

Przykłady

  • `(2/3)^2=2^2/3^2=4/9` 

  •  `(1/2)^4=1^4/2^4=1/16`  


Zapamiętaj:

  • `a^0=1 \ \ \ "dla" \ \ \ a!=0`  

  • `a^1=a`    
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom