Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Matematyka

Matematyka 7 (Podręcznik, Operon)

Do każdej liczby... 4.86 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 7 Klasa
  3. Matematyka
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium.

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
Informacje
Autorzy: Bożena Kiljańska, Adam Konstantynowicz
Wydawnictwo: Operon
Rok wydania:
Autor rozwiązania
user profile

Magda

4336

Nauczyciel

Matematyk z 22-letnim doświadczeniem, Uwielbia sport, przede wszystkim narciarstwo biegowe.

Wiedza
Liczby wymierne

Liczby wymierne to takie liczby, które możemy przedstawić w postaci ułamka `p/q`  , gdzie p i q są liczbami całkowitymi (co zapisujemy `p in C`  i  `q in C`) oraz `q!=0` .

Zbiór wszystkich liczb wymiernych oznaczamy symbolem W lub Q

Przykłady liczb wymiernych:  `23/45, \ \ 1/2, \ \ 2 1/2=5/2, \ \ -2 1/2=-5/2, \ \ 14=14/1, \ \ 0=0/1` 


Każda liczba wymierna posiada rozwinięcie dziesiętne skończone lub nieskończone okresowe, o których przeczytasz poniżej

Rozwinięcia dziesiętne

Uwaga

Wszystkie liczby naturalne i całkowite są liczbami wymiernymi, ponieważ można przedstawić je w postaci ułamka zwykłego, np:

`14 = 14/1 \ \ , \ \ -2= (-2)/1 \ \ , \ \ 4 = 4/1 \ \ , \ \ -113 = (-113)/1 \ \ , \ \ 0 = 0/2 = 0/10 = 0/(-3)` 

 

Odwrotność ułamka

Jeżeli dany jest ułamek $$a/b$$ to ułamek $$b/a$$ nazywamy odwrotnością ułamka $$a/b$$.

Przykłady:

  • $$3/4$$ jest odwrotnością ułamka $$4/3$$,
  • 4 jest odwrotnością ułamka $$1/4$$.
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom