Oblicz w zeszycie pole prostokąta... - Zadanie 2: Matematyka 7 - strona 47
Matematyka
Wybierz książkę
Oblicz w zeszycie pole prostokąta... 4.5 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 7 Klasa
  3. Matematyka
Zadanie premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Bożena Kiljańska, Adam Konstantynowicz
Wydawnictwo: Operon
Rok wydania:
ISBN: 9788378795285
Autor rozwiązania
user profile

Magda

7676

Nauczyciel

Matematyk z 22-letnim doświadczeniem, Uwielbia sport, przede wszystkim narciarstwo biegowe.

Wiedza
Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $P = a•b$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $P=a•a=a^2$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $ P=2 cm•4 cm=8 cm^2 $
    Pole tego prostokąta jest równe 8 $cm^2$.

Działania na pierwiastkach

 

Własności pierwiastkowania: 

  1. Pierwiastek z iloczynu jest równy iloczynowi pierwiastków z tych liczb.


    Dla `a>=0 \ "i" \ b>=0` 

    `sqrt{a*b}=sqrt{a}*sqrt{b}`  


    Dla dowolnych liczb `a \ "i" \ b` mamy:

    `root{3}{a*b}=root{3}{a}*root{3}{b}` 


  2. Pierwiastek z ilorazu jest równy ilorazowi pierwiastków z tych liczb.


    Dla `a>=0 \ "i" \ b>0` mamy: 

    `sqrt{a/b}=sqrt{a}/sqrt{b}` 


    Dla dowolnej liczby `a \ "i" \ b!=0` mamy:   

    `root{3}{a/b}=root{3}{a}/root{3}{b}`  

 

Przykłady:

  • `sqrt{3600}=sqrt{36*100}=sqrt{36}*sqrt{100}=6*10=60` 

  • `root{3}{-64 \ 000}=root{3}{-64*1000}=root{3}{-64}*root{3}{1000}=-4*10=-40`   

  • `sqrt{121/49}=sqrt{121}/sqrt{49}=11/7=1 4/7` 

  • `root{3}{216/512}=root{3}{216}/root{3}{512}=6/8`   
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY3135ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA6181WIADOMOŚCI
NAPISALIŚCIE785KOMENTARZY
komentarze
... i8088razy podziękowaliście
Autorom