Matematyka

Liczy się matematyka 3 (Podręcznik, WSiP )

Narysuj w jednym układzie współrzędnych... 4.43 gwiazdek na podstawie 7 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Narysuj w jednym układzie współrzędnych...

Ćwiczenie 5
 Zadanie

Ćwiczenie 6
 Zadanie
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
Informacje
Liczy się matematyka 3
Autorzy: Adam Makowski, Tomasz Masłowski, Anna Toruńska
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Funkcja ciągła
Funkcja ciągła to intuicyjnie taka funkcja, którą można narysować bez odrywania ołówka od kartki - nie ma żadnych nagłych "przeskoków". Jednak ta definicja, poza tym, że jest mało precyzyjna, zawiera błąd. Na przykład funkcję $$f(x) = frac{1}{x}$$ nazywamy funkcją ciągłą, mimo, że przecież nie da się narysować jej wykresu od $$-1$$ do $$1$$ bez odrywania ołówka. Dzieje się tak, ponieważ funkcja może być ciągła tylko w swojej dziedzinie - poza dziedziną przecież "nie istnieje", więcn nie można nic o niej powiedzieć.

Precyzyjną definicją ciągłości jest to, czy dla każdego $$x f(x)$$ jest równe granicy w tym punkcie. Intuicyjnie wydaje się to poprawne: jeśli coraz bardziej zbliżamy się do punktu $$x_0$$ i jesteśmy coraz bliżej jego wartości, to jeśli w końcu dotrzemy w $$x_0$$, to powinniśmy tam znaleźć wartość właśnie $$f(x_0)$$.

Funkcje ciągłe mają tę ciekawą właściwość, że na przedziale przyjmują wszystkie wartości pośrednie. To znaczy, że jeśli na przykład w punkcie $$x = 0 f(x) = 2$$, a w punkcie $$x = 1 f(x) = -2$$, to wiemy, że w tym przedziale na pewno znajdzie się taki punkt $$a$$, że $$f(a) = 0$$. (Oczywiście funkcja musi być określona na całym tym przedziale)

Ważne jest to, że wykonując operacje arytmetyczne oraz składając funkcje ciągłe otrzymujemy zawsze funkcje ciągłe - dlatego wszystkie "normalne", tzn określone "prostym" wzorem (jak na przykład wielomiany lub funkcje trygonometryczne) będą ciągłe.
Tabele funkcji

Aby narysować wykres dowolnej funkcji liniowej potrzebujemy dwóch dowolnych punktów, czyli musimy wybrać dowolny x i obliczyć dla niego y. Ważne przy wyborze x jest, aby jak najłatwiej policzyć y. np.

$$y=4x-7$$

możemy wybrać $$x=0$$, wtedy $$y=-7$$

czy $$x=2$$ wtedy $$y=8-7=1$$

Przejdźmy więc do naszego przykładu, przypominam, że ma on postać:

img08

Zajmijmy się pierwszym równaniem: $$y=-x+3$$

Rysujemy pierwszą tabelkę:

 
x 0 1
y    

0,1 to dwie dowolnie wybrane liczby

Teraz podstawiamy nasze x w $$y=-x+3$$

Dla ułatwienia pokażę ten proces na tabelce

x 0 1
y y=-0+3 y=-1+3

Zatem ostatecznie:

x 0 1
y 3 2

Zróbmy tak samo dla drugiego równania: $$y=2x-3$$ przy tych samych x

x 0 1
y $$y=2×0-3$$ $$y=2×1-3$$
x 0 1
y $$-3$$ $$-1$$

Mamy już nasze tabelki, więc możemy przejść do ostatecznego tworzenia wykresów.

Zobacz także
Udostępnij zadanie