Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Matematyka

MATeMAtyka 3. Zakres podstawowy i rozszerzony (Zbiór zadań, Nowa Era)

Na rysunku przedstawiono graniastosłup... 4.4 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 3 Klasa
  3. Matematyka

Na rysunku przedstawiono graniastosłup...

10
 Zadanie

11
 Zadanie

12
 Zadanie
13
 Zadanie
14
 Zadanie

Najpierw obliczmy długość odcinka c.

Zauważmy, że pole zielonego rombu wynosi:

`P=a*a*sin120^o` 

`P=a^2*sin(90^o +30^o)` 

`P=a^2*cos30^o` 

`P=a^2*sqrt3/2` 

Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium.

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
Informacje
Autorzy: Joanna Czarnowska, Jolanta Wesołowska, Barbara Wolnik
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Magda

4336

Nauczyciel

Matematyk z 22-letnim doświadczeniem, Uwielbia sport, przede wszystkim narciarstwo biegowe.

Wiedza
Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.
     

    proste-rownlegle
Mnożenie pisemne
  1. Czynniki zapisujemy jeden pod drugim wyrównując do prawej.

    mnozenie1
     
  2. Mnożymy cyfrę jedności drugiego czynnika przez wszystkie cyfry pierwszego czynnika, a otrzymany wynik zapisujemy pod kreską, wyrównując do cyfry jedności. Gdy przy mnożeniu jednej z cyfr drugiego czynnika przez jedności, dziesiątki i setki drugiego czynnika wystąpi wynik większy od 9, to cyfrę jedności tego wyniku zapisujemy pod kreską, natomiast cyfrę dziesiątek przenosimy do dziesiątek lub setek i dodajemy go do wyniku następnego mnożenia.

    W naszym przykładzie:
    4•3=12 , czyli 2 wpisujemy pod cyframi jedności, a 1 przenosimy do dziesiątek, następnie: 4•1=4, ale uwzględniamy przeniesioną 1, czyli mamy 4+1=5 i 5 wpisujemy pod cyframi dziesiątek, następnie mamy 4•1=4 i 4 wpisujemy pod cyframi setek.

    mnozenie2
     
  3. Mnożymy kolejną cyfrę drugiego czynnika przez wszystkie cyfry pierwszego czynnika, a otrzymamy wynik zapisujemy pod poprzednim, wyrównując do cyfry dziesiątek.

    W naszym przykładzie:
    1•3=3 i 3 zapisujemy pod cyframi dziesiątek, następnie 1•1=1 i 1 wpisujemy pod cyframi setek, oraz 1•1=1 i 1 wpisujemy pod cyframi tysięcy.

    mnozenie3
     
  4. Po wykonaniu mnożeń, otrzymane dwa wyniki dodajemy do siebie według zasad dodawania pisemnego.

    mnozenie4
     
  5. W rezultacie wykonanych kroków otrzymujemy wynik mnożenia pisemnego. Iloczyn liczby 113 oraz 14 wynosi 1572.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom