Matematyka

Matematyka na czasie! 2 (Zeszyt ćwiczeń, Nowa Era)

W kwadracie o boku 6 cm 4.36 gwiazdek na podstawie 11 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Zauważmy, że powstały cztery trójkąty prostokątne równoramienne:

 

Suma miar kątów w każdym trójkącie wynosi 180 stopni, a kąty przy podstawie w trójkącie równoramiennym mają jednakowe miary, dlatego miara kąta przy podstawie w tych trójkątach wynosi:

`(180^0-90^o):2=90^o:2=45^o` 

 

 

Kąt półpełny ma 180 stopni, więc każdy z kątów pomarańczowego czworokąta ma miarę:

`180^o-45^o-45^o=90^o` 

 

Pomarańczowy czworokąt ma wszystkie kąty proste oraz wszystkie boki jednakowej długości (każdy bok to podstawa trójkąta równoramiennego o ramionach 3 cm). Oznacza to, że ten czworokąt jest kwadratem. 

Pole pomarańczowego trójkąta obliczymy, odejmując od pola kwadratu o boku 6 cm pola czterech trójkątów prostokątnych o przyprostokątnych 3 cm i 3 cm. 

`P=6*6-strike4^2*1/strike2^1*3*3=36=18\ [cm^2]` 

Obliczamy długość boku kwadratu (kwadrat ma wszystkie boki jednakowej długości, więc podnosząc długość boku do kwadratu otrzymujemy pole, a więc długość boku kwadratu to pierwiastek z jego pola):

`sqrt18\ [cm]` 

 

Możemy zapisać tę długość w prostszy sposób:

`sqrt18=sqrt(9*2)=sqrt9*sqrt2=3sqrt2\ [cm]` 

DYSKUSJA
user profile image
Grzegorz

1

3 października 2017
Dzięki za pomoc :):)
Informacje
Matematyka na czasie! 2
Autorzy: Elżbieta Jabłońska, Maria Mędrzycka
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $$ P=2 cm•4 cm=8 cm^2 $$
    Pole tego prostokąta jest równe 8 $$cm^2$$.

Dzielenie pisemne
  1. Zapisujemy dzielną, nad nią kreskę, a obok, po znaku dzielenia, dzielnik. W naszym przykładzie podzielimy liczbę 1834 przez 14, inaczej mówiąc zbadamy ile razy liczba 14 „mieści się” w liczbie 1834.

    dzielenie1
     
  2. Dzielimy pierwszą cyfrę dzielnej przez dzielnik. Jeśli liczba ta jest mniejsza od dzielnika, to bierzemy pierwsze dwie lub więcej cyfr dzielnej i dzielimy przez dzielnik. Inaczej mówiąc, w dzielnej wyznaczamy taką liczbę, którą można podzielić przez dzielnik. Wynik dzielenia zapisujemy nad kreską, a resztę z dzielenia zapisujemy pod spodem (pod dzielną).

    W naszym przykładzie w dzielnej bierzemy liczbę 18 i dzielimy ją przez 14, czyli sprawdzamy ile razy 14 zmieści się w 18. Liczba 14 zmieści się w 18 jeden raz, jedynkę piszemy nad kreską (nad ostatnią cyfrą liczby 18, czyli nad 8). Następnie wykonujemy mnożenie 1•14=14 i wynik 14 wpisujemy pod liczbą 18, oddzielamy kreską i wykonujemy odejmowanie 18-14=4 i wynik 4 zapisujemy pod kreską.
    Opisane postępowanie możemy zapisać następująco: 18÷14=1 reszty 4.

    dzielenie2
     
  3. Do wyniku odejmowania opisanego w punkcie 2, czyli do otrzymanej reszty z dzielenia dopisujemy kolejną cyfrę dzielnej i wykonujemy dzielenie przez dzielnik. Tak jak poprzednio wynik zapisujemy nad kreską, a pod spodem resztę z tego dzielenia.
    W naszym przykładzie wygląda to następująco: do 4 dopisujemy cyfrę 3 (czyli kolejną cyfrę, która znajduje się za liczbą 18) i otrzymujemy liczbę 43, którą dzielimy przez dzielnik 14. Inaczej mówiąc sprawdzamy ile razy 14 zmieści się w 43. Liczba 14 zmieści się w 43 trzy razy, czyli 3 piszemy nad kreską (za 1), a następnie wykonujemy mnożenie 3•14=42i wynik 42 zapisujemy pod liczbą 43, oddzielamy kreską i wykonujemy odejmowanie 43-42=1 i wynik 1 zapisujemy pod kreską.
    Opisane postępowanie możemy zapisać: 43÷14=3 reszty 1.

    dzielenie2
     
  4. Analogicznie jak poprzednio do otrzymanej reszty dopisujemy kolejną cyfrę dzielnej i wykonujemy dzielenie przez dzielnik.
    W naszym przykładzie:
    do 1 dopisujemy ostatnią cyfrę dzielnej, czyli 4. Otrzymujemy liczbę 14, którą dzielimy przez dzielnik 14, w wyniku otrzymujemy 1 i wpisujemy ją nad kreską (po3). Następnie wykonujemy mnożenie 1•14=14 w wynik 14 zapisujemy pod 14, oddzielamy kreską i wykonujemy odejmowanie 14-14=0.
    Opisane postępowanie możemy zapisać 14÷14=1, czyli otrzymaliśmy dzielenie bez reszty, co kończy nasze dzielenie.

    dzielenie3
     
  5. Wynik dzielenia liczby 1834 przez 14 znajduje się nad kreską, czyli otrzymujemy ostatecznie iloraz 1834÷14=131.

Zobacz także
Udostępnij zadanie