Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Matematyka

Matematyka 2001 (Zbiór zadań, WSiP)

Romb, którego przekątne mają długość 10 cm i 8 cm, obrócono... 4.71 gwiazdek na podstawie 7 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Romb, którego przekątne mają długość 10 cm i 8 cm, obrócono...

28
 Zadanie
29
 Zadanie
30
 Zadanie
31
 Zadanie

32
 Zadanie

33
 Zadanie
34
 Zadanie

Rysunek pomocniczy:



W wyniku tego obrotu powstanie bryła w kształcie dwóch takich samych stożków 

(jej przekrój osiowy zilustrowano powyżej)

Obliczmy pole powierzchni tej bryły:

w tym celu korzystając  z twierdzenia Pitagorasa obliczmy długość tworzącej stożka:

`4^2+5^2=l^2` 

`16+25=l^2` 

`l^2=41 \ \ |sqrt` 

`l=sqrt41` 

zatem:

`P= 2*pi*r*l` 

`P=2*pi*4*sqrt41=8sqrt41pi \ "[cm"^2"]"` 


Obliczmy objętość tej bryły:

`V= 2*1/3*pi*r^2*h` 

`V=2/3*pi*4^2*5= 2/3*pi*16*5=160/3pi \ "[cm"^3"]"` 


Odp.: Pole tej bryły wynosi `8sqrt41 \ "cm"^2` , a objętość tej bryły wynosi `160/3pi \ "cm"^3` .

DYSKUSJA
Informacje
Autorzy: Anna Dubiecka, Barbara Dubiecka-Kruk, Zbigniew Góralewicz
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Ola

17618

Nauczyciel

Wiedza
Stożek

Stożek jest kolejna bryłą obrotową, ponieważ powstał w wyniku obrotu trójkąta prostokątnego wokół prostej zawierającej jedną z jego przyprostokątnych. Wygląda jak ostrosłup o podstawie koła. Składa się z jednej podstawy oraz powierzchni bocznej. Przekrój osiowy stożka jest trójkątem równoramiennym. Odcinek łączący wierzchołek ze środkiem podstawy jest wysokością. Każdy odcinek łączący wierzchołek z brzegiem podstawy to tworząca stożka, którą oznacza się literą „l”.

  Zobacz w programie GeoGebra

stozek

Objętość stożka:

`V=1/3P_p*H`  

`V=1/3pir^2*H`  

$$V$$ - objętość stożka

$$r$$ - długość promienia podstawy stożka

$$H$$ - długość wysokości stożka

 

Pole powierzchni całkowitej stożka:

`P_c=P_p+P_b`  

`P_c=pir^2+pirl=pir(r+l)`

$$P_c$$ - pole powierzchni całkowitej stożka

$$r$$ - długość promienia podstawy stożka

$$l$$ - długość tworzącej stożka

 

Walec, stożek, kula
  1. Walec

    Walec powstaje w wyniku obrotu prostokąta dookoła prostej zwanej osią obrotu.

      Zobacz w programie GeoGebra

    Walec
  2. Stożek

    Stożek powstaje w wyniku obrotu trójkąta wokół osi obrotu, stanowiącej jego wysokość.

      Zobacz w programie GeoGebra

    Stożek
  3. Kula

    Kula powstaje w wyniku obrotu półkola dookoła prostej zawierającej średnicę tego półkola. Pole powierzchni kuli nazywane jest sferą.

      Zobacz w programie GeoGebra
    Kula
 
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom