Matematyka

Matematyka 2001 (Zbiór zadań, WSiP)

Zapisz w postaci dziesiętnej. a) ³/₁₀, ⁴⁹/₁₀₀ 4.67 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Matematyka

Zapisz w postaci dziesiętnej. a) ³/₁₀, ⁴⁹/₁₀₀

1
 Zadanie

2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie
6
 Zadanie
7
 Zadanie
8
 Zadanie

`a) \ \ 3/10=0,3`

`49/100=0,49` 

`107/1000=0,107` 

`2476/1000=2,476` 

`b) \ \ 8/100=0,08`

`55/1000=0,055` 

`987/10000=0,09876` 

`25/1000=0,025` 

`c) \ \ 12/10=1 2/10=1,2`

`999/1000=9 99/100=9,99` 

`445/10000=0,0445` 

`199/100=1 99/100=1,99` 

`d) \ \ 13/10=1 3/10=1,3`

`888/100= 8 88/100=8,88` 

`555/1000=0,555` 

`9889/10000=0,9889` 

DYSKUSJA
Informacje
Matematyka 2001
Autorzy: Praca zbiorowa
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Monika

10287

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Ułamki dziesiętne i ich budowa
Ułamki dziesiętne to takie ułamki, których mianownikami są liczby 10, 100, 1000...

Przykłady:

  • $$1/{10}= 0,1$$
  • $$2/{100}= 0,02$$
  • $${15}/{100}= 0,15$$
  • $$3/{1000}= 0,003$$
  • $${25}/{10}= 2,5$$

Ułamki dziesiętne zapisujemy bez użycia kreski ułamkowej, natomiast stosujemy przecinek (zwany przecinkiem dziesiętnym), który oddziela część całkowitą od części ułamkowej.
 

rys1
 

Pierwsze miejsce po przecinku oznacza części dziesiąte, drugie - części setne, trzecie - części tysiączne, czwarte - części dziesięciotysięczne itd.

Przykład:

cyfry po przecinku
 

Powyższy ułamek możemy rozpisać:

$$0,781= {700}/{1000}+{80}/{1000}+1/{1000}=7/{10}+8/{100}+1/{1000}$$ -> łatwo zauważyć, że 7 to części dziesiąte, 8 części setne, a 1 to części tysięczne.

  Ciekawostka

Zapis dziesiętny liczb został opracowany w XV wieku przez perskiego matematyka Al-Kaszi, w jego dziele Miftah al-hisab (Klucz do arytmetyki). Rozpowszechnienie zawdzięczamy jednak holenderskiemu uczonemu Simonowi Stevinowi, który 1585 r. w swej pracy De Thiende (Dziesięcina) omówił istotę ułamków dziesiętnych. Notacja Stevina odbiegała od obecnie stosowanej i była dość skomplikowana, została więc szybko zmieniona. Liczby z przecinkiem błyskawicznie przyjęły się i liczbę wymierną można było wyrazić już nie tylko w postaci ułamka zwykłego. Oddzielenie przecinkiem całości od części dziesiętnych było pomysłem angielskiego matematyka. J. Nepera.

Wzajemne położenie odcinków

Dwa odcinki mogą być względem siebie prostopadłe lub równoległe.

  1. Odcinki prostopadłe – odcinki zawarte w prostych prostopadłych – symboliczny zapis $$AB⊥CD$$.

    odcinkiprostopadle
     
  2. Odcinki równoległe – odcinki zawarte w prostych równoległych – symboliczny zapis $$AB∥CD$$.

    odicnkirownolegle
 
Zobacz także
Udostępnij zadanie