Matematyka

MATeMAtyka 1. Zakres podstawowy i rozszerzony (Podręcznik, Nowa Era)

Oblicz x+|x| 4.67 gwiazdek na podstawie 9 opinii
  1. Liceum
  2. 1 Klasa
  3. Matematyka

`a)`

`x+|x|=-3+|-3|=-3+3=0`

`x-2|x|=-3-2*|-3|=-3-2*3=-3-6=-9`

 

 

`b)`

Najpierw określimy, czy x jest liczbą dodatnią czy ujemną: 

`x=4-2sqrt6=sqrt16-sqrt4*sqrt6=sqrt16-sqrt24<0\ \ \ \ ("bo"\ \ 16<24,\ \ "czyli"\ \ sqrt16<sqrt24)`

`x+|x|=4-2sqrt6+|4-2sqrt6|=4-2sqrt6-(4-2sqrt6)=0`

`x-2|x|=4-2sqrt6-2|4-2sqrt6|=4-2sqrt6+2(4-2sqrt6)=4-2sqrt6+8-4sqrt6=12-6sqrt6`

 

 

`c)`

Najpierw określimy, czy x jest liczbą dodatnią czy ujemną: 

`x=6sqrt2-8=sqrt36*sqrt2-sqrt64=sqrt72-sqrt64>0\ \ \ ("bo"\ \ 72>64,\ \ "czyli"\ \ sqrt72>sqrt64)`

`x+|x|=6sqrt2-8+|6sqrt2-8|=6sqrt2-8+6sqrt2-8=12sqrt2-16`

`x-2|x|=6sqrt2-8-2|6sqrt2-8|=6sqrt2-8-2(6sqrt2-8)=6sqrt2-8-12sqrt2+16=8-6sqrt2`

 

 

 

`d)`

Najpierw określimy, czy x jest liczbą dodatnią czy ujemną: 

`x=pi-2sqrt3~~3,14-2*1,73<0`

`x+|x|=pi-2sqrt3+|pi-2sqrt3|=pi-2sqrt3-(pi-2sqrt3)=0`

`x-2|x|=pi-2sqrt3-2|pi-2sqrt3|=pi-2sqrt3+2(pi-2sqrt3)=pi-2sqrt3+2pi-4sqrt3=3pi-6sqrt3`

  

 

DYSKUSJA
user profile image
Bożena

29-11-2017
Dzięki :):)
user profile image
Kuba

13-11-2017
Dzieki za pomoc!
Informacje
MATeMAtyka 1. Zakres podstawowy i rozszerzony
Autorzy: Wojciech Babiański, Lech Chańko, Dorota Ponczek
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Pozycyjny system dziesiątkowy

System liczenia, którego używamy jest pozycyjny i dziesiątkowy. Wyjaśnijmy co to oznacza:

  • pozycyjny, ponieważ liczbę przedstawia się jako ciąg cyfr, a wartość poszczególnych cyfr zależy od miejsca (pozycji), jakie zajmuje ta cyfra,
  • dziesiątkowy, ponieważ liczby zapisujemy za pomocą dziesięciu znaków, zwanych cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Przykład (wyjaśniający pojęcie pozycyjnego systemu dziesiątkowego):

img01
 

Każda z cyfr użyta w powyższej liczbie tworzy określoną wartość, która jest uzależniona od miejsca (pozycji), jaką zajmuje ta cyfra w zapisie utworzonej liczby.

Jeśli użyjemy dokładnie tych samych cyfr, z których zbudowana jest powyższa liczba, ale użyjemy ich w innej kolejności to otrzymamy całkiem inną liczbę (np. 935287, 728395).

Przestawienie kolejności cyfr zmienia wartość liczby, dlatego nasz system liczenia jest pozycyjny (ponieważ miejsce cyfry w zapisie liczby nadaje wartość tej liczbie), natomiast używanie dziesięciu cyfr do zapisu liczby powoduje, że nazywamy go dziesiątkowym systemem.
 

Liczbę z powyższego przykładu możemy zapisać też w następujący sposób:
$$3•1+9•10+5•100+7•1000+8•10000+2•100000= 287 593$$
 

Przykład (czytanie zapisanych liczb w pozycyjnym systemie dziesiątkowym):
  • 22 500 - czytamy: dwadzieścia dwa i pół tysiąca lub dwadzieścia dwa tysiące pięćset,
  • 1 675 241 - czytamy: milion sześćset siedemdziesiąt pięć tysięcy dwieście czterdzieści jeden.

  Ciekawostka

Pozycyjny system dziesiątkowy pochodzi prawdopodobnie z Indii (znany jest napis z 683 roku zawierający zapis liczby w systemie pozycyjnym z użyciem zera). Za pośrednictwem Arabów system ten oraz zero dotarły do Europy (stąd nazwa cyfry arabskie) i obecnie jest powszechnie używanym systemem liczbowym.

Dodawanie ułamków zwykłych
  1. Dodawanie ułamków o jednakowych mianownikach – dodajemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $$4/7+6/7={10}/7=1 3/7$$

      Uwaga

    Gdy w wyniku dodania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości (jak w przykładzie powyższym).

    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę (jak w przykładzie poniżej).

  2. Dodawanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy dodawanie.

    Przykład:

    • $$3/10+ 1/5=3/{10}+ {1•2}/{5•2}=3/{10}+ 2/{10}=5/{10}={5÷5}/{10÷5}=1/2$$
       
  3. Dodawanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy dodawanie ułamków o jednakowych mianownikach.

      $$2 1/3+ 1 1/3= {2•3+1}/3+{1•3+1}/3=7/3+4/3={11}/3=3 2/3$$
       
    • II sposób – oddzielnie dodajemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $$2 1/3+ 1 1/3= 2 + 1/3+ 1 + 1/3= 3 + 2/3= 3 2/3$$
       
  4. Dodawanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy dodawanie.

      $$2 1/3+ 1 1/2= {2•3+1}/3+{1•2+1}/2=7/3+3/2={7•2}/{3•2}+{3•3}/{2•3}={14}/6 + 9/6={23}/6=3 5/6$$
       
    • II sposób – oddzielnie dodajemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $$2 1/3+ 1 1/2= 2 + 1/3+ 1 + 1/2= 3 + 1/3+ 1/2= 3 + {1•2}/{3•2}+ {1•3}/{2•3}= 3 + 2/6+ 3/6= 3 + 5/6= 3 5/6$$
 
Zobacz także
Udostępnij zadanie