Matematyka

Matematyka z plusem 5. Liczby naturalne i ułamki zwykłe. Wersja A (Zeszyt ćwiczeń, GWO)

Wstaw znak... 4.0 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

a) 3 257 > 3 199

b) 41 317 > 38 629

c) 1 032 051 > 99 339

DYSKUSJA
Informacje
Matematyka z plusem 5. Liczby naturalne i ułamki zwykłe. Wersja A
Autorzy: Zofia Bolałek, Adam Mysior, Małgorzata Dobrowolska, Stanisław Wojtan
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Korepetytor

Masz wątpliwości co do rozwiązania?

Wiedza
Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $$0,253•10= 2,53$$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $$3,007•100= 300,7$$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $$0,024•1000= 24$$ ← przesuwamy przecinek o trzy miejsca w prawo
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Udostępnij zadanie