Sprawdź, czy dany kwadrat jest magiczny - Zadanie 4: Matematyka wokół nas 4. Zeszyt ćwiczeń cz. 2 - strona 65
Matematyka
Wybierz książkę
Sprawdź, czy dany kwadrat jest magiczny 4.8 gwiazdek na podstawie 5 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Matematyka

Sprawdź, czy dany kwadrat jest magiczny

4
 Zadanie

5
 Zadanie
6
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Kwadrat jest magiczny, jeśli suma liczb w każdym rzędzie, w każdej kolumnie oraz na każdej z dwóch przekątnych jest jednakowa. 

 

Odpowiedź:

Dany kwadrat jest magiczny. 

DYSKUSJA
komentarz do zadania undefined
Borys

18 listopada 2017
Dziękuję!!!!
komentarz do odpowiedzi undefined
Kornelia

26 września 2017
Dzieki za pomoc :):)
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Helena Lewicka, Marianna Kowalczyk
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $0,253•10= 2,53$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $3,007•100= 300,7$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $0,024•1000= 24$ ← przesuwamy przecinek o trzy miejsca w prawo
Koło i okrąg

Okrąg o środku S i promieniu długości r (r – to długość, więc jest liczbą dodatnią, co zapisujemy r>0) jest to krzywa, której wszystkie punkty leżą w tej samej odległości od danego punktu S zwanego środkiem okręgu.

Inaczej mówiąc: okręgiem o środku S i promieniu r nazywamy zbiór wszystkich punków płaszczyzny, których odległość od środka S jest równa długości promienia r.

okreg1
 

Koło o środku S i promieniu długości r to część płaszczyzny ograniczona okręgiem wraz z tym okręgiem.

Innymi słowy koło o środku S i promieniu długości r to figura złożona z tych punktów płaszczyzny, których odległość od środka S jest mniejsza lub równa od długości promienia r.

okreg2
 

Różnica między okręgiem a kołem – przykład praktyczny

Gdy obrysujemy np. monetę powstanie nam okrąg. Po zakolorowaniu tego okręgu powstanie nam koło, czyli zbiór punktów leżących zarówno na okręgu, jak i w środku.

okrag_kolo

Środek okręgu (lub koła) to punkt znajdujący się w takiej samej odległości od każdego punktu okręgu.
Promień okręgu (lub koła) to każdy odcinek, który łączy środek okręgu z punktem należącym do okręgu.

Cięciwa okręgu (lub koła) - odcinek łączący dwa punkty okręgu
Średnica okręgu (lub koła) - cięciwa przechodząca przez środek okręgu. Jest ona najdłuższą cięciwą okręgu (lub koła).

Cięciwa dzieli okrąg na dwa łuki.
Średnica dzieli okrąg na dwa półokręgi, a koło na dwa półkola.

kolo_opis
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2887ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA5677WIADOMOŚCI
NAPISALIŚCIE791KOMENTARZY
komentarze
... i8029razy podziękowaliście
Autorom