Matematyka

Matematyka wokół nas 4. Zeszyt ćwiczeń cz. 2 (Zeszyt ćwiczeń, WSiP)

Skróć liczby 3.89 gwiazdek na podstawie 9 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Matematyka
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

`a)`

`1,200=1,2`

`0,020=0,02`

 

`b)`

`6,200=6,2`

`5,400=5,4`

 

`c)`

`3,700=3,7`

`8,90=8,9`

 

DYSKUSJA
Informacje
Matematyka wokół nas 4. Zeszyt ćwiczeń cz. 2
Autorzy: Helena Lewicka, Marianna Kowalczyk
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.
     

    proste-rownlegle
Odejmowanie ułamków dziesiętnych

Odejmowanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do odejmowania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki odejmujemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecina;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 3,41-1,54=? $$
    odejmowanie-ulamkow

    $$ 3,41-1,54=1,87 $$  

Zobacz także
Udostępnij zadanie