To jest pudełko - Zadanie 1: Matematyka wokół nas 4. Zeszyt ćwiczeń cz. 2 - strona 41
Matematyka
Wybierz książkę
To jest pudełko 4.6 gwiazdek na podstawie 10 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Matematyka

To jest pudełko

1
 Zadanie

2
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Na rysunku zamkniętego pudełka niewidoczne są: 3 krawędzie, 1 wierzchołek, 3 ściany. 

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
komentarz do odpowiedzi undefined
Gość

7 maja 2018
Dzienki
opinia do zadania undefined
Karina

23 kwietnia 2018
dzięki!!!
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Helena Lewicka, Marianna Kowalczyk
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $0,253•10= 2,53$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $3,007•100= 300,7$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $0,024•1000= 24$ ← przesuwamy przecinek o trzy miejsca w prawo
Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $a⊥b$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $a∥b$.
     

    proste-rownlegle
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2887ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA5677WIADOMOŚCI
NAPISALIŚCIE791KOMENTARZY
komentarze
... i8029razy podziękowaliście
Autorom