Matematyka

Temperatura powietrza na danym terenie zależy od wysokości tego terenu nad poziomem morza. 4.2 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Temperatura powietrza na danym terenie zależy od wysokości tego terenu nad poziomem morza.

4
 Zadanie

5
 Zadanie

`h=150` 
`t=-0,006*150+25=-0,9+25=24,1` 


`h=300`   
`t=-0,006*300+25=-1,8+25=23,2` 


`h=450` 
`t=-0,006*450+25=-2,7+25=22,3` 


`h=600` 
`t=-0,006*600+25=-3,6+25=21,4` 


`h=750` 
`t=-0,006*750+25=-4,5+25=20,5`  

 

h [m]

150

300

450

600

750

t [°C]

24,1

23,2

22,3

21,4

20,5


I.
Temperatura powietrza maleje, gdy wysokość wzrasta


II.
 Temperatura na Rysach wynosi około 10 °C. 
h=2500
t=-0,006∙2500+25=-15+25=10


III. Temperatura na zewnątrz balonu wynosi 14,2 °C.
1,8 km = 1800 m
h=1800 m
t=
-0,006∙1800+25=-10,8+25=14,2

DYSKUSJA
Informacje
Matematyka wokół nas 2. Zeszyt ćwiczeń cz. 2
Autorzy: Barbara Podobińska, Teresa Przetacznik-Dąbrowa
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Dodawanie pisemne

Krok po kroku jak wykonywać dodawanie pisemne:

  1. Składniki zapisujemy jeden pod drugim tak, by cyfry jedności tworzyły jedną kolumnę, cyfry dziesiątek – drugą, cyfry setek – trzecią, itd. (czyli cyfry liczb wyrównujemy do prawej strony), a następnie oddzielamy je poziomą kreską.

    dodawanie1
     
  2. Dodawanie prowadzimy od strony prawej do lewej. Najpierw dodajemy jedności, czyli ostatnie cyfry w dodawanych liczbach – w naszym przykładzie będzie to 9 i 3. Jeżeli uzyskana suma jest większa od 9, to w kolumnie jedności pod kreską piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny dziesiątek.
    W naszym przykładzie mamy $$9 + 3 = 12$$, czyli w kolumnie jedności piszemy 2, a 1 przenosimy do kolumny dziesiątek.

    dodawanie2
     
  3. Następnie dodajemy dziesiątki naszych liczb wraz z cyfrą przeniesioną i postępujemy jak poprzednio, czyli jeśli uzyskana suma jest większa od 9, to w kolumnie dziesiątek piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny setek.
    W naszym przykładzie otrzymamy: $$1 + 5 + 6 = 12$$, czyli w kolumnie dziesiątek piszemy 2, a 1 przenosimy do kolumny setek.

    dodawanie3
     
  4. Dodajemy cyfry setek wraz z cyfrą przeniesioną i wynik zapisujemy pod kreską.
    W naszym przykładzie mamy: $$1+2+1=4$$ i wynik ten wpisujemy pod cyframi setek.

    dodawanie4
     
  5. W rezultacie opisanego postępowania otrzymujemy wynik dodawania pisemnego.
    W naszym przykładzie sumą liczb 259 i 163 jest liczba 422.

Prostopadłościan

Prostopadłościan to figura przestrzenna, której kształt przypomina pudełko lub akwarium.

Prostopadłościan

  • Każda ściana prostopadłościanu jest prostokątem.
  • Każdy prostopadłościan ma 6 ścian - 4 ściany boczne i 2 podstawy, 8 wierzchołków i 12 krawędzi.
  • Dwie ściany mające wspólną krawędź nazywamy prostopadłymi.
  • Dwie ściany, które nie mają wspólnej krawędzi, nazywamy równoległymi.
  • Każda ściana jest prostopadła do czterech ścian oraz równoległa do jednej ściany.

Z każdego wierzchołka wychodzą trzy krawędzie – jedną nazywamy długością, drugą – szerokością, trzecią – wysokością prostopadłościanu i oznaczamy je odpowiednio literami a, b, c. Długości tych krawędzi nazywamy wymiarami prostopadłościanu.

Prostopadłościan - długości

a – długość prostopadłościanu, b – szerokość prostopadłościanu, c - wysokość prostopadłościanu.

Prostopadłościan, którego wszystkie ściany są kwadratami nazywamy sześcianem.Wszystkie krawędzie sześcianu mają jednakową długość.

kwadrat
Zobacz także
Udostępnij zadanie