Matematyka

Matematyka 1. Ćwiczenia podstawowe (Zeszyt ćwiczeń, GWO)

Uzupełnij zdania, używając procentów. Białe pola szachownicy 4.67 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Matematyka

Uzupełnij zdania, używając procentów. Białe pola szachownicy

1
 Zadanie
2
 Zadanie
3
 Zadanie

4
 Zadanie

Wszystkich pól jest 100, z czego 50 jest białych oraz 50 czarnych.

Obliczamy, jaką część (jaki procent) stanowią białe pola:

`50/100=50%`

Obliczamy, jaki procent stanowią ciemne pola:

`100%-50%=50%`

 Białe pola szachownicy stanowią 50% jej powierzchni. Ciemne pola zajmują pozostałe 50% szachownicy.

 

 

`ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )`  

 

 

Płot składa się z 10 jednakowych sztachetek, z których 6 zostało pomalowanych, a 4 zostały do pomalowania. 

Obliczamy, jaki procent płotu pomalowano:

`6/10=60/100=60%`

Obliczamy, jaki procent płotu został do pomalowania:

`100%-60%=40%`

 60% płotu pomalowano. Pozostało do pomalowania 40% płotu

 

`ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

Cała pizza została podzielona na 4 jednakowe kawałki. Zjedzono 1 kawałek, zostały 3 kawałki.

Oblicamy, jaki procent pizzy zjedzono:

`1/4=25/100=25%`

Obliczamy, jaki procent pizzy pozostał do zjedzenia:

`100%-25%=75%`

25% pizzy zjedzono. Pozostało 75% pizzy.

 

 

`ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

Naczynie zostało podzielone na 5 jednakowych części. Płyn wypełnia jedną z tych części, pozostałe cztery części są puste. 

Obliczamy, jaki procent pojemności naczynia zajmuje płyn:

`1/5=20/100=20%`

Obliczamy, jaki procent pojemności naczynia został pusty:

`100%-20%=80%`

Płyn wypełnia 20% pojemności naczynia, a 80% naczynia jest puste.

 

DYSKUSJA
user profile image
Bogdan

16 października 2017
Dzięki za pomoc :)
user profile image
Angelika

5 października 2017
Dzięki za pomoc :):)
user profile image
Marian

2 października 2017
dzięki!!!
Informacje
Matematyka 1. Ćwiczenia podstawowe
Autorzy: Jacek Lech
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Monika

10252

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Odejmowanie pisemne
  1. Zapisujemy odjemną, a pod nią odjemnik, wyrównując ich cyfry do prawej strony.

    odejmowanie1
     
  2. Odejmowanie prowadzimy od strony prawej do lewej. Najpierw odejmujemy jedności, w naszym przykładzie mamy 3 - 9. Jeśli jedności odjemnej są mniejsze od jedności odjemnika (a tak jest w naszym przykładzie), wtedy z dziesiątek przenosimy jedną (lub więcej) „dziesiątkę” do jedności i wykonujemy zwykłe odejmowanie.
    W naszym przykładzie wygląda to następująco: od 3 nie możemy odjąć 9, więc przenosimy (pożyczamy) jedną dziesiątkę z siedmiu dziesiątek i otrzymujemy 13 – 9 = 4, czyli pod cyframi jedności zapisujemy 4, a nad cyframi dziesiątek zapisujemy ilość dziesiątek które nam zostały czyli 6 (bo od siedmiu dziesiątek pożyczyliśmy jedną, czyli zostało nam sześć dziesiątek).

    odejmowanie2
     
  3. Odejmujemy dziesiątki, a następnie zapisujemy wynik pod cyframi dziesiątek. Gdy dziesiątki odjemnej są mniejsze od dziesiątek odjemnika, z setek przenosimy jedną (lub więcej) „setkę” do dziesiątek i wykonujemy zwykłe odejmowanie.
    W naszym przykładzie mamy: 6 – 6 = 0, czyli pod cyframi dziesiątek zapisujemy 0.

    odejmowanie2
     
  4. Odejmujemy setki, a następnie wynik zapisujemy pod cyframi setek. Gdy setki odjemnej są mniejsze od setek odjemnika, z tysięcy przenosimy jeden (lub więcej) „tysiąc” do setek i wykonujemy zwykłe odejmowanie.
    W naszym przykładzie mamy: 2 – 1 = 1, czyli pod cyframi setek zapisujemy 1.

    odejmowanie3
     
  5. W rezultacie opisanego postępowania otrzymujemy wynik odejmowania pisemnego. W naszym przykładzie różnicą liczb 273 i 169 jest liczba 104.


Dla utrwalenia przeanalizujmy jeszcze jeden przykład odejmowania pisemnego.

Wykonamy pisemnie odejmowanie: 4071 - 956.

  1. Zapisujemy odjemną, a pod nią odjemnik.

    odejmowanie11
     
  2. Odejmujemy jedności: od 1 nie możemy odjąć 6, więc pożyczamy jedną dziesiątkę z siedmiu i otrzymujemy 11 – 6 = 5, czyli pod cyframi jedności zapisujemy 5, natomiast nad cyframi dziesiątek wpisujemy 6 (bo od siedmiu dziesiątek pożyczyliśmy jedną, czyli zostaje sześć dziesiątek).

    odejmowanie12
     
  3. Odejmujemy dziesiątki: 6 – 5 = 1, czyli pod cyframi dziesiątek wpisujemy 1.

    odejmowanie13
     
  4. Odejmujemy setki: od 0 nie możemy odjąć 9, więc pożyczamy jeden tysiąc i rozmieniamy go na 10 setek (bo jeden tysiąc to dziesięć setek) i otrzymujemy 10 – 9 = 1, czyli pod cyframi setek wpisujemy 1, a nad cyframi tysięcy wpisujemy 3, bo tyle tysięcy zostało.

    odejmowanie14
     
  5. Odejmujemy tysiące: w naszym przykładzie mamy 3 – 0 = 3 i wynik zapisujemy pod cyframi tysięcy.

    odejmowanie15
     
  6. Wynik naszego odejmowania: 4071 – 956 = 3115.

Siatka prostopadłościanu

Po rozcięciu powierzchni prostopadłościanu wzdłuż kilku krawędzi i rozłożeniu go na powierzchnię płaską powstanie jego siatka. Jest to wielokąt złożony z prostokątów, czyli ścian graniastosłupa. Ten sam prostopadłościan może mieć kilka siatek.

Siatka prosopadłościanu
Zobacz także
Udostępnij zadanie