Matematyka

Zamień na dzielenie przez liczbę całkowitą 4.53 gwiazdek na podstawie 19 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Matematyka

Zamień na dzielenie przez liczbę całkowitą

11
 Zadanie
12
 Zadanie
13
 Zadanie

14
 Zadanie

15
 Zadanie

Aby zamienić na dzielenie przez liczbę całkowitą, przesuwamy przecinek o tyle samo miejsc w dzielnej i dzielniku w prawo, tak aby dzielnik był liczbą całkowitą.

`a) \ \ 6,87:1,2=68,7:12`

`b) \ \ 15,307:0,3=153,07:3`

`c) \ \ 2,482:0,75=248,2:75`

DYSKUSJA
Informacje
Matematyka 1. Ćwiczenia podstawowe
Autorzy: Jacek Lech
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Monika

3550

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Oś liczbowa

Oś liczbowa to prosta, na której każdemu punktowi jest przypisana dana wartość liczbowa, zwana jego współrzędną.

Przykład:

osie liczbowe

Odcinek jednostkowy na tej osi to część prostej między -1 i 0.

Po prawej stronie od 0 znajduje się zbiór liczb nieujemnych, a po lewej zbiór liczb niedodatnich. Grot strzałki wskazuje, że w prawą stronę rosną wartości współrzędnych. Oznacza to, że wśród wybranych dwóch współrzędnych większą wartość ma ta, która leży po prawej stronie (względem drugiej współrzędnej).

Odejmowanie ułamków dziesiętnych

Odejmowanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do odejmowania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki odejmujemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecina;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 3,41-1,54=? $$
    odejmowanie-ulamkow

    $$ 3,41-1,54=1,87 $$  

Zobacz także
Udostępnij zadanie