Matematyka

Matematyka wokół nas 2 (Zbiór zadań, WSiP)

Dziesięcioosobowej grupie rodziców 4.71 gwiazdek na podstawie 7 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Dziesięcioosobowej grupie rodziców

14
 Zadanie
15
 Zadanie
16
 Zadanie

17
 Zadanie

Wiemy, że 20% rodziców przeznacza na rozmowę z dzieckiem jedną godzinę, 40% rodziców przeznacza pół godziny. Reszta przeznacza 15 minut, obliczmy, jaki to procent badanej grupy:

`100%-20%-40%=40%`

 

Zapiszmy, jaką częścią godziny jest 15 minut:

`15\ mi n=15/60\ h=1/4\ h`

 

Mamy więc następujące informacje:

`20%\ "rodziców"\ \ \ -\ \ \ 1\ h`

`40%\ "rodziców"\ \ \ -\ \ \ 1/2\ h`

`40%\ "rodziców"\ \ \ -\ \ \ 1/4\ h`

 

Obliczamy, ile godzin średnio poświęca jeden rodzic z tej grupy na rozmowy z dziećmi:

`(20%*1+40%*1/2+40%*1/4)/(20%+40%+40%)=`

`=(20/100*1+strike40^20/100*1/strike2^1+strike40^10/100*1/strike4^1)/(100%)=`

`=(20/100+20/100+10/100)/1=50/100=1/2`

 

Odpowiedź:

Jeden rodzic z tej grupy na rozmowę z dziećmi poświęca średnio pół godziny dziennie. 

DYSKUSJA
Informacje
Matematyka wokół nas 2
Autorzy: Drążek Anna, Duvnjak Ewa, Kokiernak-Jurkiewicz Ewa
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $$ P=2 cm•4 cm=8 cm^2 $$
    Pole tego prostokąta jest równe 8 $$cm^2$$.

Jednostki pola

Jednostki pola służą do określenia pola danej figury, mówią nam ile maksymalnie kwadratów jednostkowych mieści się wewnątrz danej figury.

Jednostką pola może być dowolny kwadrat, jednak najczęściej używane są poniżej przedstawione jednostki pola, które ułatwiają przekazywanie informacji o polach figur:

  • $$1 mm^2$$ (milimetr kwadratowy) → pole kwadratu o boku 1 mm jest równe $$1 mm^2$$
  • $$1 cm^2$$ (centymetr kwadratowy) → pole kwadratu o boku 1 cm jest równe 1 $$cm^2$$
  • $$1 dm^2$$ (decymetr kwadratowy) → pole kwadratu o boku 1 dm jest równe $$1 dm^2$$
  • $$1 m^2 $$(metr kwadratowy) → pole kwadratu o boku 1 m jest równe $$1 m^2$$
  • $$1 km^2$$ (kilometr kwadratowy) → pole kwadratu o boku 1 km jest równe $$1 km^2$$
  • $$1 a$$ (ar) → pole kwadratu o boku 10 m jest równe 100 $$m^2$$
  • $$1 ha$$ (hektar) → pole kwadratu o boku 100 m jest równe 10000 $$m^2$$

Zależności między jednostkami pola:

  • $$1 cm^2 = 100 mm$$; $$1 mm^2 = 0,01 cm^2$$
  • $$1 dm^2 = 100 cm^2 = 10 000 mm^2$$; $$1 cm^2 = 0,01 dm^2$$
  • $$1 m^2 = 100 dm^2 = 10 000 cm^2 = 1 000 000 mm^2$$; $$1 dm^2 = 0,01 m^2$$
  • $$1 km^2 = 1 000 000 m^2 = 10 000 a = 100 ha$$; $$1 ha = 0,01 km^2$$
  • $$1 a = 100 m^2$$; $$1 m^2 = 0,01 a$$
  • $$1 ha = 100 a = 10 000 m^2$$; $$1 a = 0,01 ha$$

Przykłady wyprowadzania powyższych zależności:

  • $$1 cm^2 = 10mm•10mm=100$$ $$mm^2$$
  • $$1 cm^2 = 0,1dm•0,1dm=0,01$$ $$dm^2$$
  • $$1 km^2 = 1000m•1000m=1000000$$ $$m^2$$
Zobacz także
Udostępnij zadanie