Matematyka

Przyjrzyj się wykonanym szacowaniom wartości 4.13 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

`a) \ 3sqrt{5}=3*sqrt{5}=sqrt{9}*sqrt{5}=sqrt{45}`  

`sqrt{36}<sqrt{45}<sqrt{49}` 
`\ \ \ \ 6<sqrt{45}<7`    


`sqrt{44,89}<sqrt{45}<sqrt{46,24}` 
`\ \ \ \ \ \ 6,7<sqrt{45}<6,8`     

`ul(ul( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))` 


`b) \ \ 4sqrt{7}=4*sqrt{7}=sqrt{16}*sqrt{7}=sqrt{112}`  

`sqrt{100}<sqrt{112}<sqrt{121}` 
`\ \ \ \ 10<sqrt{112}<11`   


 `sqrt{110,25}<sqrt{112}<sqrt{112,36}` 
`\ \ \ \ \ \ 10,5<sqrt{112}<10,6`   
`ul(ul( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))` 


`c) \ 2root{3}{15}=2*root{3}{15}=root{3}{8}*root{3}{15}=root{3}{120}`  


`root{3}{64}<root{3}{120}<root{3}{125}` 
`\ \ \ \ 4<root{3}{120}<5`   


`root{3}{117,649}<root{3}{120}<root{3}{125}` 
`\ \ \ \ \ \ \ \ \ 4,9<root{3}{120}<5`   
`ul(ul( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))` 


`d) \ 3root{3}{50}=3*root{3}{50}=root{3}{27}*root{3}{50}=root{3}{1350}`   


`root{3}{1331}<root{3}{1350}<root{3}{1728}` 
`\ \ \ \ \ \ 11<root{3}{1350}<12`   

`root{3}{1331}<root{3}{1350}<root{3}{1367,631}` 
`\ \ \ \ \ \ 11<root{3}{1350}<11,1`  
`ul(ul( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))` 


`e) \ 3sqrt{5}+1=3*sqrt{5}+1=sqrt{9}*sqrt{5}+1=sqrt{45}+1`

`sqrt{36}+1<sqrt{45}+1<sqrt{49}+1`  
`\ \ \ \ 6+1<sqrt{45}+1<7+1`   
`\ \ \ \ \ \ \ \ \ 7<sqrt{45}+1<8`    


`sqrt{44,89}+1<sqrt{45}+1<sqrt{46,24}+1` 
`\ \ \ \ \ \ 6,7+1<sqrt{45}<6,8+1`    
`\ \ \ \ \ \ \ \ \ \ \ 7,7<sqrt{45}<7,8`    

`ul(ul( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))` 


`f) \ \ 4sqrt{7}-2,5=4*sqrt{7}-2,5=sqrt{16}*sqrt{7}-2,5=sqrt{112}-2,5`  

`sqrt{100}-2,5<sqrt{112}-2,5<sqrt{121}-2,5` 
`\ \ \ \ 10-2,5<sqrt{112}-2,5<11-2,5`   
`\ \ \ \ \ \ \ \ \ \ \ 7,5<sqrt{112}-2,5<8,5`    


 `sqrt{110,25}-2,5<sqrt{112}-2,5<sqrt{112,36}-2,5` 
`\ \ \ \ \ \ 10,5-2,5<sqrt{112}<10,6-2,5`    
`\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 8<sqrt{112}<8,1`    
`ul(ul( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))` 


`g) \ 2root{3}{15}+3,1=2*root{3}{15}+3,1=root{3}{8}*root{3}{15}+3,1=root{3}{120}+3,1`  


`root{3}{64}+3,1<root{3}{120}+3,1<root{3}{125}+3,1` 
`\ \ \ \ 4+3,1<root{3}{120}+3,1<5+3,1`   
`\ \ \ \ \ \ \ \ \ 7,1<root{3}{120}+3,1<8,1`  


`root{3}{117,649}+3,1<root{3}{120}+3,1<root{3}{125}+3,1` 
`\ \ \ \ \ \ \ \ \ 4,9+3,1<root{3}{120}+3,1<5+3,1`    
`\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 8<root{3}{120}+3,1<8,1`  
`ul(ul( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))` 


`h) \ 3root{3}{50}-7=3*root{3}{50}-7=root{3}{27}*root{3}{50}-7=root{3}{1350}-7`    


`root{3}{1331}-7<root{3}{1350}-7<root{3}{1728}-7`  
`\ \ \ \ \ \ 11-7<root{3}{1350}-7<12-7`   
`\ \ \ \ \ \ \ \ \ \ \ \ \ 4<root{3}{1350}-7<5`   

`root{3}{1331}-7<root{3}{1350}-7<root{3}{1367,631}-7`   
`\ \ \ \ \ \ 11-7<root{3}{50}<11,1-7`  
`\ \ \ \ \ \ \ \ \ \ \ \ \ 4<root{3}{50}<4,1`  

DYSKUSJA
Informacje
Matematyka 2001
Autorzy: Dubiecka-Kruk Barbara, Dubiecka Anna, Bazyluk Anna
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Kolejność wykonywania działań

Przy rozwiązywaniu bardziej skomplikowanego działania, najważniejsze jest zachowanie kolejności wykonywania działań.

Kolejność wykonywania działań:

  1. Wykonywanie działań w nawiasach;

  2. Potęgowanie i pierwiastkowanie;

  3. Mnożenie i dzielenie (jeżeli w działaniu występuje dzielenie lub zarówno mnożenie, jak i dzielenie, to działania wykonujemy w kolejności w jakiej są zapisane od lewej do prawej strony).
    Przykład: $$16÷2•5=8•5=40$$;

  4. Dodawanie i odejmowanie (jeżeli w działaniu występuje odejmowanie lub zarówno dodawanie, jak i odejmowanie, to działania wykonujemy w kolejności w jakiej są zapisane od lewej strony do prawej).
    Przykład: $$24 - 6 +2 = 18 + 2 = 20$$.

Przykład:

$$(45-9•3)-4=(45-27)-4=18-4=14 $$
 
Pozycyjny system dziesiątkowy

System liczenia, którego używamy jest pozycyjny i dziesiątkowy. Wyjaśnijmy co to oznacza:

  • pozycyjny, ponieważ liczbę przedstawia się jako ciąg cyfr, a wartość poszczególnych cyfr zależy od miejsca (pozycji), jakie zajmuje ta cyfra,
  • dziesiątkowy, ponieważ liczby zapisujemy za pomocą dziesięciu znaków, zwanych cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Przykład (wyjaśniający pojęcie pozycyjnego systemu dziesiątkowego):

img01
 

Każda z cyfr użyta w powyższej liczbie tworzy określoną wartość, która jest uzależniona od miejsca (pozycji), jaką zajmuje ta cyfra w zapisie utworzonej liczby.

Jeśli użyjemy dokładnie tych samych cyfr, z których zbudowana jest powyższa liczba, ale użyjemy ich w innej kolejności to otrzymamy całkiem inną liczbę (np. 935287, 728395).

Przestawienie kolejności cyfr zmienia wartość liczby, dlatego nasz system liczenia jest pozycyjny (ponieważ miejsce cyfry w zapisie liczby nadaje wartość tej liczbie), natomiast używanie dziesięciu cyfr do zapisu liczby powoduje, że nazywamy go dziesiątkowym systemem.
 

Liczbę z powyższego przykładu możemy zapisać też w następujący sposób:
$$3•1+9•10+5•100+7•1000+8•10000+2•100000= 287 593$$
 

Przykład (czytanie zapisanych liczb w pozycyjnym systemie dziesiątkowym):
  • 22 500 - czytamy: dwadzieścia dwa i pół tysiąca lub dwadzieścia dwa tysiące pięćset,
  • 1 675 241 - czytamy: milion sześćset siedemdziesiąt pięć tysięcy dwieście czterdzieści jeden.

  Ciekawostka

Pozycyjny system dziesiątkowy pochodzi prawdopodobnie z Indii (znany jest napis z 683 roku zawierający zapis liczby w systemie pozycyjnym z użyciem zera). Za pośrednictwem Arabów system ten oraz zero dotarły do Europy (stąd nazwa cyfry arabskie) i obecnie jest powszechnie używanym systemem liczbowym.

Zobacz także
Udostępnij zadanie