Matematyka

Zapisz podane liczby w postaci potęg o podstawie 2. 4.33 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Zapisz podane liczby w postaci potęg o podstawie 2.

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie

5
 Zadanie

Rozwiązanie nie mieści się w rubryce zeszytu ćwiczeń - podano je rozszerzone, by zrozumiały był każdy krok rozwiązania. Podkreślono przejście którego nie wpisujemy do zeszytu ćwiczeń.

 

`"I."`

`0,5=ul(1/2)=2^(-1)`

 

`"II."`

`0,25= ul(1/4= 1^2/2^2=(1/2)^2=(2^(-1))^2)=2^(-2)`

 

`"III."`

`0,125=ul( 1/8=1^3/2^3=(1/2)^3=(2^(-1))^3)=2^(-3)`

 

`"IV."`

`0,0625=ul(625/10000=1/16=1^4/2^4=(1/2)^4=(2^(-1))^4)=2^(-4)`

DYSKUSJA
Informacje
Matematyka 2001. Zeszyt ćwiczeń cz. 1
Autorzy: Opracowanie zbiorowe
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Monika

3464

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Dodawanie pisemne

Krok po kroku jak wykonywać dodawanie pisemne:

  1. Składniki zapisujemy jeden pod drugim tak, by cyfry jedności tworzyły jedną kolumnę, cyfry dziesiątek – drugą, cyfry setek – trzecią, itd. (czyli cyfry liczb wyrównujemy do prawej strony), a następnie oddzielamy je poziomą kreską.

    dodawanie1
     
  2. Dodawanie prowadzimy od strony prawej do lewej. Najpierw dodajemy jedności, czyli ostatnie cyfry w dodawanych liczbach – w naszym przykładzie będzie to 9 i 3. Jeżeli uzyskana suma jest większa od 9, to w kolumnie jedności pod kreską piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny dziesiątek.
    W naszym przykładzie mamy $$9 + 3 = 12$$, czyli w kolumnie jedności piszemy 2, a 1 przenosimy do kolumny dziesiątek.

    dodawanie2
     
  3. Następnie dodajemy dziesiątki naszych liczb wraz z cyfrą przeniesioną i postępujemy jak poprzednio, czyli jeśli uzyskana suma jest większa od 9, to w kolumnie dziesiątek piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny setek.
    W naszym przykładzie otrzymamy: $$1 + 5 + 6 = 12$$, czyli w kolumnie dziesiątek piszemy 2, a 1 przenosimy do kolumny setek.

    dodawanie3
     
  4. Dodajemy cyfry setek wraz z cyfrą przeniesioną i wynik zapisujemy pod kreską.
    W naszym przykładzie mamy: $$1+2+1=4$$ i wynik ten wpisujemy pod cyframi setek.

    dodawanie4
     
  5. W rezultacie opisanego postępowania otrzymujemy wynik dodawania pisemnego.
    W naszym przykładzie sumą liczb 259 i 163 jest liczba 422.

Porównywanie ułamków

Porównywanie dwóch ułamków polega na stwierdzeniu, który z nich jest mniejszy, który większy.

  • Porównywanie ułamków o takich samych mianownikach
    Jeżeli ułamki zwykłe mają takie same mianowniki, to ten jest większy, który ma większy licznik

    Przykład:

    $$3/8$$ < $$5/8$$
     
  • Porównywanie ułamków o takich samych licznikach
    Jeżeli ułamki zwykłe mają takie same liczniki, to ten jest większy, który ma mniejszy mianownik.

    Przykład:

    $$4/5$$ > $$4/9$$
Zobacz także
Udostępnij zadanie