Matematyka

Wpisz prędkości podane w ramce w odpowiednie luki 4.75 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Matematyka

Wpisz prędkości podane w ramce w odpowiednie luki

3
 Zadanie

4
 Zadanie
5
 Zadanie
6
 Zadanie

Zamieńmy prędkości tak, aby były podane w tych samych jednostkach, wtedy będziemy mogli je porównać. 

 

`3\ (km)/(m i n)=3\ (1000\ m)/(60\ s)=3000/60\ m/s=50\ m/s`

`40\ m/s`

`120\ (km)/h=120\ (1000\ m)/(3600\ s)=(120 \ 000)/3600\ m/s=1200/36\ m/s=200/6\ m/s=100/3\ m/s=33 1/3\ m/s`

`800\ m/(mi n)=800\ m/(60\ s)=800/60\ m/s=80/6\ m/s=40/3\ m/s=13 1/3\ m/s`

 

 

`800\ "m/min"<120\ "km/h"<40\ "m/s"<3\ "km/min"`

DYSKUSJA
Informacje
Matematyka 2001. Zeszyt ćwiczeń cz. 1
Autorzy: Praca zbiorowa
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Kąty

Kąt to część płaszczyzny ograniczona dwiema półprostymi o wspólnym początku, wraz z tymi półprostymi.

Półproste nazywamy ramionami kąta, a ich początek – wierzchołkiem kąta.

kat-glowne
 


Rodzaje kątów:

  1. Kąt prosty – kąt, którego ramiona są do siebie prostopadłe – jego miara stopniowa to 90°.

    kąt prosty
  2. Kąt półpełny – kąt, którego ramiona tworzą prostą – jego miara stopniowa to 180°.
     

    kąt pólpelny
     
  3. Kąt ostry – kąt mniejszy od kąta prostego – jego miara stopniowa jest mniejsza od 90°.
     

    kąt ostry
     
  4. Kąt rozwarty - kąt większy od kąta prostego i mniejszy od kąta półpełnego – jego miara stopniowa jest większa od 90o i mniejsza od 180°.

    kąt rozwarty
  5. Kąt pełny – kąt, którego ramiona pokrywają się, inaczej mówiąc jedno ramię tego kąta po wykonaniu całego obrotu dookoła punktu O pokryje się z drugim ramieniem – jego miara stopniowa to 360°.
     

    kat-pelny
     
  6. Kąt zerowy – kąt o pokrywających się ramionach i pustym wnętrzu – jego miara stopniowa to 0°.

    kat-zerowy
 
Obwód

Obwód wielokąta to suma długości boków danego wielokąta.

  1. Obwód prostokąta – dodajemy długości dwóch dłuższych boków i dwóch krótszych.

    Zatem prostokąt o wymiarach a i b ma obwód równy:
    Obwód prostokąta: $$Ob = 2•a+ 2•b$$.

    Przykład: Policzmy obwód prostokąta, którego boki mają długości 6 cm i 8 cm.

    ob_kwadrat

    $$Ob=2•8cm+2•6cm=16cm+12cm=28cm$$
     

  2. Obwód kwadratu – dodajemy długości czterech identycznych boków, zatem wystarczy pomnożyć długość boku przez cztery.

    Zatem kwadrat o boku długości a ma obwód równy:
    Obwód kwadratu: $$Ob = 4•a$$.

    Przykład: Policzmy obwód kwadratu o boku długości 12 cm.

    ob_prostokat

    $$Ob=4•12cm=48cm$$

 
Zobacz także
Udostępnij zadanie