Matematyka

Matematyka wokół nas 1 (Zbiór zadań, WSiP)

Przekątną kwadratu skrócono o 40% 4.4 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Matematyka

Obliczmy najpierw, jaką długość miał na początku bok kwadratu. 

 

Obwód tego kwadratu jest równy:

`O_1=4*5\ cm=20\ cm`

 

 

Obliczamy, jaką długość będzie miała przekątna drugiego kwadratu (jeśli skrócimy ją o 40%, to będzie stanowiła 100%-40%=60% starej przekątnej)

`60%*sqrt50\ cm=60/100*sqrt50\ cm=3/5*sqrt50\ cm`

 

Obliczamy, jaką długość ma bok drugiego kwadratu:

 

Obwód tego kwadratu jest równy: 

`O_2=4*3\ cm=12\ cm`

 

Obliczamy, o ile zmniejszył się obwód kwadratu:

`O_2-O_1=20\ cm-12\ cm=8\ cm\ \ \ \ odp.\ D`

 

DYSKUSJA
Informacje
Matematyka wokół nas 1
Autorzy: Ewa Duvnjak, Ewa Kokiernak-Jurkiewicz
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Dodawanie pisemne

Krok po kroku jak wykonywać dodawanie pisemne:

  1. Składniki zapisujemy jeden pod drugim tak, by cyfry jedności tworzyły jedną kolumnę, cyfry dziesiątek – drugą, cyfry setek – trzecią, itd. (czyli cyfry liczb wyrównujemy do prawej strony), a następnie oddzielamy je poziomą kreską.

    dodawanie1
     
  2. Dodawanie prowadzimy od strony prawej do lewej. Najpierw dodajemy jedności, czyli ostatnie cyfry w dodawanych liczbach – w naszym przykładzie będzie to 9 i 3. Jeżeli uzyskana suma jest większa od 9, to w kolumnie jedności pod kreską piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny dziesiątek.
    W naszym przykładzie mamy $$9 + 3 = 12$$, czyli w kolumnie jedności piszemy 2, a 1 przenosimy do kolumny dziesiątek.

    dodawanie2
     
  3. Następnie dodajemy dziesiątki naszych liczb wraz z cyfrą przeniesioną i postępujemy jak poprzednio, czyli jeśli uzyskana suma jest większa od 9, to w kolumnie dziesiątek piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny setek.
    W naszym przykładzie otrzymamy: $$1 + 5 + 6 = 12$$, czyli w kolumnie dziesiątek piszemy 2, a 1 przenosimy do kolumny setek.

    dodawanie3
     
  4. Dodajemy cyfry setek wraz z cyfrą przeniesioną i wynik zapisujemy pod kreską.
    W naszym przykładzie mamy: $$1+2+1=4$$ i wynik ten wpisujemy pod cyframi setek.

    dodawanie4
     
  5. W rezultacie opisanego postępowania otrzymujemy wynik dodawania pisemnego.
    W naszym przykładzie sumą liczb 259 i 163 jest liczba 422.

Wielokrotności

Wielokrotność liczby to dana liczba pomnożona przez 1,2,3,4,5 itd.
Inaczej mówiąc, wielokrotność liczby n to każda liczba postaci 1•n, 2•n, 3•n, 4•n, 5•n ...

Przykłady:

  • wielokrotnością liczby 4 jest:
    • 4, bo $$4=1•4$$
    • 8, bo $$8=2•4$$
    • 12, bo $$12=3•4$$
    • 16, bo $$16=4•4$$
    • 20, bo $$20=5•4$$
       
  • wielokrotnością liczby 8 jest:
    • 8, bo $$8=1•8$$
    • 16, bo $$16=2•8$$
    • 24, bo $$24=3•8$$
    • 32, bo $$32=4•8$$
    • 40, bo $$40=5•8$$
Zobacz także
Udostępnij zadanie