Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Matematyka

MATeMAtyka 2. Zakres podstawowy i rozszerzony (Zbiór zadań, Nowa Era)

Podaj przykład ciągu (an)... 4.57 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka

a) Wiemy, że granicą ciągu:

`b_n = 1/n` 

jest 0

 

Zatem:

`a_n = 6-1/n` 

 

Ciąg jest rosnący bo odejmujemy liczbę, która przy n dążącym do nieskończoności dąży do 0. Czyli odjemna się zmniejsza a więc różnica się zwiększa.

 

`b) \ a_n = sqrt2+1/n` 

Składnik sumy przy każdym kolejnym n maleje zatem ciąg jest malejący.

 

`c) \ a_n = pi + (-1)^n/n` 

Dodajemy do `pi` liczbę, która dąży do 0 i dla nieparzystych elementów jest ujemna a dla parzystych dodatnia. Zatem ciąg nie jest monotoniczny. 

DYSKUSJA
Informacje
Autorzy: Joanna Czarnowska, Jolanta Wesołowska, Wojciech Babiański, Lech Chańko
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Działania na granicach
Analogicznie do granic ciągów, na granicach funkcji także możemy wykonywać działania artytmetyczne - na przykład jeśli granicą funkcji $$f(x)$$ jest $$A$$, a granicą $$g(x)$$ - $$B$$, to granicą funckcji $$h(x) = f(x) + g(x)$$ będzie po prostu $$A+B$$.
Obliczanie granic ciągów
W niniejszej sekcji zajmiemy się obliczaniem granic ciągów korzystając z twierdzeń o granicach ciągów i granic znanych nam ze wcześniejszych lekcji.

Krótkie przypomnienie:

Fakt 1: granica ciągu w nieskończoności $$a_n = {1}/{n}$$ to $$0$$.

Fakt 2: Twierdzenie o granicach ciągów mówi, że jeśli mamy trzy ciągi: na przykład $$(a_n)$$, $$(b_n)$$ i $$(c_n)$$ i $$c_n= a_n + b_n$$, a $$lim↙{ → ∞} a_n = A$$ i $$lim↙{n → ∞} b_n = B$$, to $$lim↙{n → ∞} c_n = A+B$$. Oczywiście nie musi być tam dodawania: równie dobrze może być odejmowanie, mnożenie lub dzielenie.

To niepozorne i w miarę logiczne twierdzenie (skoro dodajemy każde dwa wyrazy dwóch ciągów i tworzymy z tych sum trzeci ciąg, a poprzednie zbiegały do jakichśtam granic, to ten będący sumą zbiega do granicy będącej sumą tamtych), to bardzo przydaje się w normalnych zastosowaniach: nie trzeba wtedy liczyć wszystkiego z definicji, a wystarczy po prostu skorzystać z granic znanych ciągów.

Inaczej mówiąc: jeśli mamy ciąg, którego wyrazy możemy w prosty sposób otrzymać z wyrazów znanych nam już ciągów (dodając je, mnożąc itp), to możemy próbować obliczyć granicę nowego ciągu korzystając jedynie z granic tamtych.

Dla przykładu obliczmy granicę w nieskończoności ciągu

$$b_n = {1}/{n^2}$$.

Zauważmy, że $$b_n = {1}/{n^2} = {1}/{n} × {1}/{n}$$. Skoro $$lim↙{n → ∞} b_n = a_n×a_n$$, to korzystając z twierdzenia o granicach ciągów otrzymujemy $$lim↙{n → ∞} b_n = lim↙{n → ∞} b_n = a_n × lim↙{n → ∞} a_n = 0×0 = 0$$

Obliczmy granicę innego ciągu:
$$p_n = {n^3 - 3n^2 + 2}/{2n^3 + 100n - 10}$$

Jest to bardzo często spotykany typ ciągów.

Ponieważ na razie zarówno mianownik, jak i licznik dążą do nieskończoności i nie da się tego stwierdzić od razu, musimy doprowadzić wzór do postaci, z której będziemy mogli wyodrębnić ciągi, których granice już znamy.

Podzielnmy więc obie strony ułamka przez $$n^3$$ - największą potęgę $$n$$ występującą we wzorze. Otrzymujemy:

$$p_n = {1 - 3{1}/{n} + 2{1}/{n^3} }/{2 + 100{1}/{n^2} + 10{1}/{n^3}}$$

Z tej postaci możemy już powiedzieć, do czego dąży każdy składnik:

1) Granicą $$1$$ i $$2$$ są po prostu $$1$$ i $$2$$.
2) Granicami wszystkich pozostałych ułamków są zera - dla $${1}/{n^2}$$ pokazywaliśmy to w poprzednim przykładzie.

Z twierdzenia o działaniach artytmetycznych na granicach możemy więc powiedzieć, że:

$$lim↙{n → ∞} p_n = lim↙{n → ∞} {1 - 3{1}/{n} + 2{1}/{n^3} }/{2 + 100{1}/{n^2} + 10{1}/{n^3} } = {(lim↙{n → ∞} 1) - (lim↙{n → ∞} 3{1}/{n}) + (lim↙{n → ∞} 2{1}/{n^3})}/{(lim↙{n → ∞} 2) + (lim↙{n → ∞} 100{1}/{n^2}) + lim↙{n → ∞} (10{1}/{n^3})} =$$
$$= {1 - 3×0 + 2×0}/{2 + 100×0 + 10×0} = {1}/{2}$$
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom