Matematyka

Bilet normalny do teatru kosztuje 120 zł, a dziecku 4.58 gwiazdek na podstawie 12 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Matematyka

Bilet normalny do teatru kosztuje 120 zł, a dziecku

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie

5
 Zadanie

Jeśli dziecku przysługuje 15% zniżkim, tzn. że cena jego biletu stanowi 100%-15%=85% ceny biletu normalny. Obliczmy zatem 85% ceny 120 zł

`85%*120 \ "zł"=85/100* 120 \ "zł"= 17/strike20^1*strike120^6"zł"=17*6 \ "zł"=102\ "zł"`

Znając cenę biletu dla dziecka, obliczamy ile zapłaci za wyjście do teatru każda kolejna rodzina.

`A. \ \ 102 \ "zł"+120 \ "zł"=222 \ "zł"`

`B. \ \ 2*120 \ "zł"+102 \ "zł"=240 \ "zł"+102 \ "zł"=342 \ "zł"`

`C. \ \ 120 \ "zł"+2*102 \ "zł"=120 \ "zł"+204 \ "zł"=324 \ "zł"`

Za wyjście do teatru 324 zł zapłaci rodzica C.

Odpowiedź:

C.

DYSKUSJA
Informacje
Matematyka na czasie! 1
Autorzy: Elżbieta Jabłońska, Maria Mędrzycka
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

1595

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Ułamki dziesiętne i ich budowa
Ułamki dziesiętne to takie ułamki, których mianownikami są liczby 10, 100, 1000...

Przykłady:

  • $$1/{10}= 0,1$$
  • $$2/{100}= 0,02$$
  • $${15}/{100}= 0,15$$
  • $$3/{1000}= 0,003$$
  • $${25}/{10}= 2,5$$

Ułamki dziesiętne zapisujemy bez użycia kreski ułamkowej, natomiast stosujemy przecinek (zwany przecinkiem dziesiętnym), który oddziela część całkowitą od części ułamkowej.
 

rys1
 

Pierwsze miejsce po przecinku oznacza części dziesiąte, drugie - części setne, trzecie - części tysiączne, czwarte - części dziesięciotysięczne itd.

Przykład:

cyfry po przecinku
 

Powyższy ułamek możemy rozpisać:

$$0,781= {700}/{1000}+{80}/{1000}+1/{1000}=7/{10}+8/{100}+1/{1000}$$ -> łatwo zauważyć, że 7 to części dziesiąte, 8 części setne, a 1 to części tysięczne.

  Ciekawostka

Zapis dziesiętny liczb został opracowany w XV wieku przez perskiego matematyka Al-Kaszi, w jego dziele Miftah al-hisab (Klucz do arytmetyki). Rozpowszechnienie zawdzięczamy jednak holenderskiemu uczonemu Simonowi Stevinowi, który 1585 r. w swej pracy De Thiende (Dziesięcina) omówił istotę ułamków dziesiętnych. Notacja Stevina odbiegała od obecnie stosowanej i była dość skomplikowana, została więc szybko zmieniona. Liczby z przecinkiem błyskawicznie przyjęły się i liczbę wymierną można było wyrazić już nie tylko w postaci ułamka zwykłego. Oddzielenie przecinkiem całości od części dziesiętnych było pomysłem angielskiego matematyka. J. Nepera.

Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Zobacz także
Udostępnij zadanie