Matematyka

Dokończ poniższe zdanie ... 4.5 gwiazdek na podstawie 6 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Wartość wyrażenia  jest równa

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Barbara Dubiecka-Kruk, Piotr Piskorski, Anna Dubiecka, Ewa Malicka
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302173059
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Dodawanie i odejmowanie ułamków

Dodawanie i odejmowanie ułamków zwykłych

Dodawanie lub odejmowanie ułamków mających jednakowe mianowniki – dodajemy lub odejmujemy liczniki, a mianownik pozostawiamy bez zmian.

Przykłady: 

  • `4/7+6/7=10/7=1 3/7` 

  • `1 3/7+2/7=1 5/7`   

  • `1 3/5+4 2/5=5 5/5=6` 

  •  `5/6-2/3=3/6=1/2` 

  • `1 -4/9=9/9-4/9=5/9`   

  • `3 1/6-1 5/6=2 7/6-1 5/6=1 2/6=1 1/3`  


Dodawaniu i odejmowaniu ułamków o różnych mianownikach - ułamki sprowadzamy do wspólnego mianownika.

Przykłady:

  • `3/7+1/3=9/21+7/21=16/21` 

  • `2 1/5+3/6=2 6/30+15/30=2 21/30`   

  • `1 1/4+3 2/5=1 5/20+3 8/20=4 13/20` 

  • `4/5-2/3=12/15-10/15=2/15` 

  • `2 1/3-1/9=2 3/9-1/9=2 2/9`   

  • `2 5/8-1 3/5=2 25/40-1 24/40=1 1/40`  

 

Dodawanie i odejmowanie ułamków dziesiętnych 

Aby dodać lub odjąć dwa ułamki dziesiętne należy chwilowo pominąć przecinek i wykonać działania na liczbach naturalnych. 

Następnie w wyniku wstawiamy przecinek w takim miejscu, aby po przecinku było tyle samo cyfr, ile występuje w każdym z ułamków. 

Przykłady:

  • `57,879+3,32=57,879+3,320=61,199`  
    [57 879+3320=61 199, więc 57,879+3,320=61,199, gdyż w każdym ułamku mamy po trzy cyfry po przecinku, więc w wyniku również muszą być trzy cyfry po przecinku]
     
  • `3,45-2,34=1,11` 
    [345-234=111, więc 3,45-2,31=1,11 gdyż w każdym ułamku mamy po dwie cyfry po przecinku, więc w wyniku również muszą być dwie cyfry po przecinku]


Dodawanie i odejmowanie ułamków zwykłych oraz dziesiętnych

Gdy dodajemy lub odejmujemy ułamek dziesiętny i ułamek zwykły wystarczy doprowadzić je do wspólnej postaci. 

Przykłady:

  • `3/4+2,2=0,75+2,20=2,95` 

  • `2,5-3/4=2 1/2-3/4=2 2/4-3/4=1 6/4-3/4=1 3/4`   
Odejmowanie ułamków zwykłych
  1. Odejmowanie ułamków o jednakowych mianownikach – odejmujemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $$5/6-2/6= 3/6= {3÷3}/{6÷3}=1/2$$

      Uwaga

    Gdy w wyniku odejmowania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości.
    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę.

  2. Odejmowanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy odejmowanie.

    Przykład:

    • $$3/{10}- 1/5=3/{10}- {1•2}/{5•2}=3/{10}- 2/{10}=1/{10}$$
       
  3. Odejmowanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy odejmowanie ułamków o jednakowych mianownikach.

      Przykład:

      $$2 1/3- 1 1/3= {2•3+1}/3-{1•3+1}/3=7/3-4/3=3/3=1$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $$2 1/3- 1 1/3= 2 + 1/3- 1 - 1/3= 2 – 1 + 1/3- 1/3= 1 + 0 = 1$$
       
  4. Odejmowanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy odejmowanie.

      Przykład:

      $$2 1/3- 1 1/2= {2•3+1}/3-{1•2+1}/2=7/3-3/2={7•2}/{3•2}-{3•3}/{2•3}={14}/6-9/6=5/6$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $$2 1/2- 1 1/3= 2 + 1/2- 1 - 1/3= 2 - 1 + 1/2-1/3= 1 +{1•3}/{2•3}-{1•2}/{3•2}= 1 + 3/6- 2/6= 1 + 1/6= 1 1/6$$
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom