Matematyka

Magda ma 525 koralików żółtych i 210 zielonych ... 4.75 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Magda ma 525 koralików żółtych i 210 zielonych ...

11
 Zadanie
1
 Zadanie
2
 Zadanie

3
 Zadanie

Musimy znaleźć największą liczbę, przez jaką dzielą się obie te liczby. 

Najpierw rozkładamy obie liczby na czynniki pierwsze.

Thumb str. 83   3

Aby obliczyć NWD dwóch liczb, wypisujemy czynniki, które powtórzyły się w rozkładach obu liczb i obliczamy ich iloczyn. 

Odp. D

 

DYSKUSJA
user avatar
Pytanie do Autora

16 listopada 2017

A dlaczego w zad 3 rozkladamy liczbe 210na 3 a nie na 2?

user avatar
Agnieszka

35845

16 listopada 2017

Weźmy dla przykładu liczbę 6. Liczba ta dzieli się przez 2 i 3. Zatem:

`6:2=3` 

`3:3=1`  

Możemy również zacząć dzielenie od liczby 3, b...

user avatar
Konrad Zieliński BOOM

27 listopada 2017
@Agnieszka Pomogłaś Mi Dziękuje
klasa:
Informacje
Autorzy: Barbara Dubiecka-Kruk, Piotr Piskorski, Anna Dubiecka, Ewa Malicka
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302173059
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Największy wspólny dzielnik (NWD)

Największy wspólny dzielnik (NWD) dwóch liczb naturalnych jest to największa liczba naturalna, która jest dzielnikiem każdej z tych liczb.

Przykłady:

  • Największy wspólny dzielnik liczb 6 i 9 to liczba 3.

    1. Wypiszmy dzielniki liczby 6: 1, 2, 3, 6.
    2. Wypiszmy dzielniki liczby 9: 1, 3, 9.
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 6 i 9. Jest to 3.

  • Największy wspólny dzielnik liczb 12 i 20 to liczba 4.

    1. Wypiszmy dzielniki liczby 12: 1, 2, 3, 4, 6, 12.
    2. Wypiszmy dzielniki liczby 20: 1, 2, 4, 5, 10, 20.
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 12 i 20. Jest to 4.


Największy wspólny dzielnik 
dwóch liczb można znaleźć także wykorzystując rozkład na czynniki pierwsze. 

Aby znaleźć NWD dwóch liczb należy: 

  1. Rozłożyć liczby na czynniki pierwsze. 

  2. Zaznaczyć wspólne dzielniki obu liczb. 

  3. Obliczyć iloczyn wspólnych czynników (zaznaczonych czynników).  

Przykład:

Rozkład liczby na czynniki pierwsze

Każda liczba naturalna większa od 1 jest albo liczbą pierwszą albo daje się przedstawić w postaci iloczynu liczb pierwszych, przy czym takie przedstawienie jest tylko jedno, jeśli nie uwzględniać kolejności czynników.

Rozkład liczby na czynniki pierwsze to przedstawienie liczby w postaci iloczynu liczb pierwszych.

Sposób rozkładania liczby naturalnej na czynniki pierwsze:

  1. Zapisujemy liczbę, którą chcemy rozłożyć na czynniki pierwsze, a obok niej kreskę pionową.

    rozklad-1
  2. Dzielimy daną liczbę przez najmniejszy dzielnik będący liczbą pierwszą. Dzielnik ten zapisujemy po prawej stronie kreski, a wynik dzielenia zapisujemy pod daną liczbą.

    rozklad-2

    W naszym przykładzie dzielnikiem liczby 198 będącym liczbą pierwszą jest liczba 2, zatem 2 zapisujemy po prawej stronie kreski, a wynik dzielenia 198÷2 = 99 zapisujemy pod liczbą 198.

  3. Czynność z punktu 2 powtarzamy tak długo, aż wynikiem ostatniego dzielenia będzie liczba 1.

    rozklad-3

    W naszym przykładzie szukamy dzielnika liczy 99 będącego liczbą pierwszą, dzielnikiem takim jest 3, którą zapisujemy po prawej stronie kreski (pod 2), a wynik dzielenia 99÷3 = 33, zapisujemy po lewej stronie kreski (pod 99).
    Następnie szukamy dzielnika liczby 33 będącego liczbą pierwszą, dzielnikiem takim jest 3, którą zapisujemy po prawej stronie kreski (pod 3), a wynik dzielenia 33÷3 = 11 zapisujemy po lewej stronie kreski (pod 33).

    Kolejny etap to szukanie dzielnika liczby 11 będącego liczbą pierwszą, dzielnikiem takim jest 11 i zapisujemy ją po prawej stronie kreski (pod 3), a wynik dzielenia 11÷11 = 1 zapisujemy po lewej stronie kreski (pod 11). Wynikiem dzielenia jest 1, zatem rozłożyliśmy daną liczbę 198 na czynniki pierwsze.

  4. Rozkład liczby na czynniki pierwsze to iloczyn liczb zapisanych po prawej stronie kreski.
    Rozkład liczby 198 na czynniki pierwsze jest następujący: $$198=2•3•3•11$$.

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom