Matematyka

Sprowadź ułamki do najmniejszego wspólnego mianownika ... 4.56 gwiazdek na podstawie 9 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Sprowadź ułamki do najmniejszego wspólnego mianownika ...

12
 Zadanie

13
 Zadanie

14
 Zadanie
15
 Zadanie

a)  

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
user avatar
Bożena

4 lutego 2018
Dzięki :)
user avatar
Tomasz

14 grudnia 2017
Dziękuję!!!!
klasa:
Informacje
Autorzy: Barbara Dubiecka-Kruk, Piotr Piskorski, Anna Dubiecka, Ewa Malicka
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302173059
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Dodawanie i odejmowanie ułamków

Dodawanie i odejmowanie ułamków zwykłych

Dodawanie lub odejmowanie ułamków mających jednakowe mianowniki – dodajemy lub odejmujemy liczniki, a mianownik pozostawiamy bez zmian.

Przykłady: 

  • `4/7+6/7=10/7=1 3/7` 

  • `1 3/7+2/7=1 5/7`   

  • `1 3/5+4 2/5=5 5/5=6` 

  •  `5/6-2/3=3/6=1/2` 

  • `1 -4/9=9/9-4/9=5/9`   

  • `3 1/6-1 5/6=2 7/6-1 5/6=1 2/6=1 1/3`  


Dodawaniu i odejmowaniu ułamków o różnych mianownikach - ułamki sprowadzamy do wspólnego mianownika.

Przykłady:

  • `3/7+1/3=9/21+7/21=16/21` 

  • `2 1/5+3/6=2 6/30+15/30=2 21/30`   

  • `1 1/4+3 2/5=1 5/20+3 8/20=4 13/20` 

  • `4/5-2/3=12/15-10/15=2/15` 

  • `2 1/3-1/9=2 3/9-1/9=2 2/9`   

  • `2 5/8-1 3/5=2 25/40-1 24/40=1 1/40`  

 

Dodawanie i odejmowanie ułamków dziesiętnych 

Aby dodać lub odjąć dwa ułamki dziesiętne należy chwilowo pominąć przecinek i wykonać działania na liczbach naturalnych. 

Następnie w wyniku wstawiamy przecinek w takim miejscu, aby po przecinku było tyle samo cyfr, ile występuje w każdym z ułamków. 

Przykłady:

  • `57,879+3,32=57,879+3,320=61,199`  
    [57 879+3320=61 199, więc 57,879+3,320=61,199, gdyż w każdym ułamku mamy po trzy cyfry po przecinku, więc w wyniku również muszą być trzy cyfry po przecinku]
     
  • `3,45-2,34=1,11` 
    [345-234=111, więc 3,45-2,31=1,11 gdyż w każdym ułamku mamy po dwie cyfry po przecinku, więc w wyniku również muszą być dwie cyfry po przecinku]


Dodawanie i odejmowanie ułamków zwykłych oraz dziesiętnych

Gdy dodajemy lub odejmujemy ułamek dziesiętny i ułamek zwykły wystarczy doprowadzić je do wspólnej postaci. 

Przykłady:

  • `3/4+2,2=0,75+2,20=2,95` 

  • `2,5-3/4=2 1/2-3/4=2 2/4-3/4=1 6/4-3/4=1 3/4`   
Odejmowanie ułamków zwykłych
  1. Odejmowanie ułamków o jednakowych mianownikach – odejmujemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $$5/6-2/6= 3/6= {3÷3}/{6÷3}=1/2$$

      Uwaga

    Gdy w wyniku odejmowania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości.
    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę.

  2. Odejmowanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy odejmowanie.

    Przykład:

    • $$3/{10}- 1/5=3/{10}- {1•2}/{5•2}=3/{10}- 2/{10}=1/{10}$$
       
  3. Odejmowanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy odejmowanie ułamków o jednakowych mianownikach.

      Przykład:

      $$2 1/3- 1 1/3= {2•3+1}/3-{1•3+1}/3=7/3-4/3=3/3=1$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $$2 1/3- 1 1/3= 2 + 1/3- 1 - 1/3= 2 – 1 + 1/3- 1/3= 1 + 0 = 1$$
       
  4. Odejmowanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy odejmowanie.

      Przykład:

      $$2 1/3- 1 1/2= {2•3+1}/3-{1•2+1}/2=7/3-3/2={7•2}/{3•2}-{3•3}/{2•3}={14}/6-9/6=5/6$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $$2 1/2- 1 1/3= 2 + 1/2- 1 - 1/3= 2 - 1 + 1/2-1/3= 1 +{1•3}/{2•3}-{1•2}/{3•2}= 1 + 3/6- 2/6= 1 + 1/6= 1 1/6$$
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom