Jedna podstawa i wysokość trapezu prostokątnego mają... - Zadanie 10: Matematyka 5 - strona 199
Matematyka
Wybierz książkę
Jedna podstawa i wysokość trapezu prostokątnego mają... 4.63 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Jedna podstawa i wysokość trapezu prostokątnego mają...

4
 Zadanie
5
 Zadanie
6
 Zadanie
7
 Zadanie
8
 Zadanie
9
 Zadanie

10
 Zadanie

11
 Zadanie

`b=8 \ "cm"+3 \ "cm"=11 \ "cm"`

Obliczmy pole tego trapezu:  

`P=1/2*(8 \ "cm"+11 \ "cm")*8 \ "cm"=1/strike2^1*19 \ "cm"*strike8^4 \ "cm"=76 \ "cm"^2`

Odp.: Pole tego trapezu wynosi 76 cm².

DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Barbara Dubiecka-Kruk, Piotr Piskorski, Anna Dubiecka, Ewa Malicka
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302173103
Autor rozwiązania
user profile

Monika

28013

Nauczyciel

Wiedza
Przeliczanie jednostek – centymetry na metry i kilometry

W praktyce ważna jest umiejętność przeliczania 1 cm na planie lub mapie na ilość metrów lub kilometrów w terenie.

  • 1 m = 100 cm
  • 1 cm = 0,01 m
  • 1 km = 1000 m = 100000 cm
  • 1 m = 0,001 km
  • 1 cm = 0,00001 km

Przykłady na przeliczanie skali mapy:

  • skala 1:2000 mówi nam, że 1 cm na mapie to 2000 cm w rzeczywistości, czyli 20 m policzmy: 2000 cm = 2000•0,01= 20 m
  • skala 1:30000 mówi nam, że 1 cm na mapie to 30000 cm w rzeczywistości, czyli 300 m policzmy: 30000 cm = 30000•0,01= 300 m
  • skala 1:500000 mówi nam, że 1 cm na mapie to 500000 cm w rzeczywistości, czyli 5 km policzmy: 500000 cm = 500000•0,00001= 5 km
  • skala 1:1000000 mówi nam, że 1 cm na mapie to 1000000 cm w rzeczywistości, czyli 10 km policzmy: 1000000 cm = 1000000•0,00001= 10 km
Odejmowanie ułamków dziesiętnych

Odejmowanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do odejmowania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki odejmujemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecina;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $ 3,41-1,54=? $
    odejmowanie-ulamkow

    $ 3,41-1,54=1,87 $  

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2663ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA6582WIADOMOŚCI
NAPISALIŚCIE739KOMENTARZY
komentarze
... i8370razy podziękowaliście
Autorom