Matematyka

Współczynnik kierunkowy funkcji liniowej f 4.17 gwiazdek na podstawie 6 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka

Funkcja jest postaci y=ax+b. Do jej wykresu należą punkty (0, 1) oraz (3, -1):

`{(1=a*0+b), (-1=3a+b):}`

`{(b=1), (-1=3a+1\ \ |-1):}`

`{(b=1), (3a=-2\ \ |:3):}`

`{(b=1),(a=-2/3):}`

 

`odp.\ C`

DYSKUSJA
Informacje
Matematyka 2 Pazdro. Zbiór zadań do liceów i techników. Poziom podstawowy
Autorzy: Marcin Kurczab, Elżbieta Kurczab i Elżbieta Świda
Wydawnictwo: OE Pazdro
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Dzielenie z resztą

Na początek zapoznajmy się z twierdzeniem o dzieleniu z resztą, które brzmi następująco:
"Dla pary liczb całkowitych a i b (gdzie b ≠ 0) istnieją liczby całkowite q i r, dla których spełnione jest równanie a = qb + r, gdzie 0 ≤ r < │b│. Liczby q i r nazywa się odpowiednio ilorazem i resztą z dzielenia a przez b."

Innymi słowy, dzielenie z resztą to takie dzielenie, w którym iloraz nie jest liczbą całkowitą.

Przykład obliczania reszty z dzielenia:

  1. Podzielmy liczbę 23 przez 3.
  2. Wynikiem dzielenia nie jest liczba całkowita (nie dzieli się równo). Maksymalna liczba trójek, które zmieszczą się w 23 to 7.
  3. $$7 • 3 = 21$$
  4. Różnica między liczbami 23 i 21 wynosi 2, zatem resztą z tego dzielenia jest liczba 2.
  5. Poprawny zapis działania: $$21÷3=7$$ $$r.2$$

Przykłady:

  • $$5÷2=2$$ r. 1
  • $$27÷9=3$$ r. 0
  • $$(-8)÷(-3)=3 r. 1$$
  • $$(-15)÷4=-3$$ .r -3 lub $$(-15)÷4=-4$$ r. 1

  Zapamiętaj

Reszta jest zawsze mniejsza od dzielnika.

Porównywanie ułamków

Porównywanie dwóch ułamków polega na stwierdzeniu, który z nich jest mniejszy, który większy.

  • Porównywanie ułamków o takich samych mianownikach
    Jeżeli ułamki zwykłe mają takie same mianowniki, to ten jest większy, który ma większy licznik

    Przykład:

    $$3/8$$ < $$5/8$$
     
  • Porównywanie ułamków o takich samych licznikach
    Jeżeli ułamki zwykłe mają takie same liczniki, to ten jest większy, który ma mniejszy mianownik.

    Przykład:

    $$4/5$$ > $$4/9$$
Zobacz także
Udostępnij zadanie