Matematyka

Matematyka z plusem 4 (Podręcznik, GWO)

Popatrz na zestaw składników do upieczenia chleba 4.57 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Matematyka

Popatrz na zestaw składników do upieczenia chleba

3
 Zadanie
4
 Zadanie
5
 Zadanie
6
 Zadanie
7
 Zadanie

8
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

`a)\ 1\ kg\ 80\ dag+1\ kg\ 20\ dag+6\ dag+4\ dag+3\ dag+8\ dag=`

`\ \ \ =2 \ kg\ 121\ dag=2\ kg+1\ kg\ 21\ dag=3\ kg\ 21\ dag`

ODP: Te składniki ważą łącznie 3 kg 21 dag. 

 

 

`b)`

Mąka waży 1 kg 80 dag, obliczamy, ile ważą pozostałe składniki: 

`3\ kg\ 21\ dag-1\ kg\ 80\ dag=2\ kg\ 121\ dag-1\ kg\ 80\ dag=1\ kg\ 41\ dag`

ODP: Mąka waży więcej niż wszystkie pozostałe składniki razem. 

DYSKUSJA
user profile image
Maciek

2 stycznia 2018
Dzięki za pomoc :)
user profile image
Tadeusz

26 listopada 2017
dzieki!!!
user profile image
Gość

24 listopada 2017
dziękuje
user profile image
Bruno

9 listopada 2017
Dziękuję!
Informacje
Matematyka z plusem 4
Autorzy: M. Dobrowolska, M. Jucewicz, P. Zarzycki
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Najmniejsza wspólna wielokrotność (nww)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest: 15.
    1. Wypiszmy wielokrotności liczby 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...;
    2. Wypiszmy wielokrotności liczby 5: 5, 10, 15, 20, 25, 30, 35, ...;
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.
  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest: 12.
    1. Wypiszmy wielokrotności liczby 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...;
    2. Wypiszmy wielokrotności liczby 6: 6, 12, 18, 24, 30, 36, 42, 48, ...;
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6, widzimy że jest to 12.
Pole powierzchni prostopadłościanu

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.

$$P_p$$ -> pole powierzchni

Pole powierzchni prostopadłościanu
 

Każdy prostopadłościan ma 3 pary takich samych ścian.

Pole powierzchni oblicza się z poniższego wzoru, gdzie $$P_1$$, $$P_2$$ i $$P_3$$ to pola ścian prostopadłościanu.

$$P_p=2•P_1+2•P_2+2•P_3$$

Wzór na pole powierzchni prostopadłościanu możemy zapisać w następującej postaci:
$$P_p = 2•a•b + 2•b•c + 2•a•c$$ (a,b,c - wymiary prostopadłościanu)
 

  Zapamiętaj

Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $$P_p=6•P$$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $$P_p = 6•a•a = 6•a^2$$ (a - bok sześcianu).

Zobacz także
Udostępnij zadanie