Matematyka

Matematyka z plusem 4 (Podręcznik, GWO)

Odgadnij regułę, według której zapisano kolejne liczby 4.63 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Matematyka

Odgadnij regułę, według której zapisano kolejne liczby

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie
6
 Zadanie

7
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

`a)`

REGUŁA: każda następna liczba jest o 10 większa od poprzedniej 

Obliczamy kolejne liczby:

`187+10=197`

`197+10=207`

`207+10=217`

`217+10=227`

`227+10=237`

 

 

`b)`

REGUŁA: każda następna liczba jest o 15 większa od poprzedniej

`495+15=495+5+10=500+10=510`

`510+15=525`

`525+15=540`

`540+15=555`

`555+15=570`

 

 

 

`c)`

REGUŁA: każda następna liczba jest o 10 mniejsza od poprzedniej

`220-10=210`

`210-10=200`

`200-10=190`

`190-10=180`

`180-10=170`

 

 

 

`d)`

REGUŁA: każda następna liczba jest o 8 mniejsza od poprzedniej

`476-8=476-6-2=470-2=468`

`468-8=460`

`460-8=452`

`452-8=452-2-6=450-6=444`

`444-8=444-4-4=440-4=436`

 

DYSKUSJA
user profile image
Lilka

27 grudnia 2017
Dzięki za pomoc!
Informacje
Matematyka z plusem 4
Autorzy: M. Dobrowolska, M. Jucewicz, P. Zarzycki
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Największy wspólny dzielnik (nwd)

Największy wspólny dzielnik (NWD) dwóch liczb naturalnych jest to największa liczba naturalna, która jest dzielnikiem każdej z tych liczb.

Przykłady:

  • Największy wspólny dzielnik liczb 6 i 9 to liczba 3.

    1. Wypiszmy dzielniki liczby 6: 1, 2, 3, 6;
    2. Wypiszmy dzielniki liczby 9: 1, 3, 9;
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 6 i 9. Jest to 3.
  • Największy wspólny dzielnik liczb 12 i 20 to liczba 4.

    1. Wypiszmy dzielniki liczby 12: 1, 2, 3, 4, 6, 12;
    2. Wypiszmy dzielniki liczby 20: 1, 2, 4, 5, 10, 20;
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 12 i 20. Jest to 4.
Mnożenie i dzielenie

Kolejnymi działaniami, które poznasz są mnożenie i dzielenie.

  1. Mnożenie to działanie przyporządkowujące dwóm liczbom a i b liczbę c = a•b (lub a×b). Mnożone liczby nazywamy czynnikami, a wynik mnożenia iloczynem.

    mnożenie liczb

    Mnożenie jest:

    1. przemienne (czynniki można zamieniać miejscami) , np. 3 • 2 = 2 • 3
    2. łączne (gdy mamy większą liczbę czynników możemy je mnożyć w dowolnej kolejności),
      np. $$(3 • 5) • 2 = 3 • (5 • 2)$$
    3. rozdzielne względem dodawania i odejmowania
      np. 2 • (3 + 4) = 2 • 3 + 2 • 4
      2 • ( 4 - 3) = 2 • 4 - 2 • 3
      Wykorzystując łączność mnożenia można zdecydowanie łatwiej uzyskać iloczyn np.: 4 • 7 • 5 = (4 • 5) • 7 = 20 • 7 = 140
  2. Dzielenie
    Podzielić liczbę a przez b oznacza znaleźć taką liczbę c, że $$a = b • c$$, np. $$12÷3 = 4$$, bo $$12 = 3 • 4$$.
    Wynik dzielenia nazywamy ilorazem, a liczby odpowiednio dzielną i dzielnikiem.

    dzielenie liczb

    Dzielenie podobnie jak odejmowanie nie jest ani przemienne, ani łączne
     

  Ciekawostka

Znak x (razy) został wprowadzony w 1631 przez angielskiego matematyka W. Oughtreda, a symbol ͈„•” w 1698 roku przez niemieckiego filozofa i matematyka G. W. Leibniz'a.

Zobacz także
Udostępnij zadanie