Matematyka

Matematyka z plusem 4. Arytmetyka. Wersja B (Zeszyt ćwiczeń, GWO)

Oblicz: 4.38 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Matematyka
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
user profile image
Gość

16 stycznia 2018
Jest wykupiony pakiet na 90 dni Prosze odblokować
user profile image
Odrabiamy.pl

538

16 stycznia 2018

@Gość Cześć, komentujesz rozwiązanie zadania jako gość, dlatego proszę się zalogować na konto a będziesz miał dostęp do wszystkich zadań :). Pozdrawiam

user profile image
misia1808

7 grudnia 2016
wykupiłam pakiet i tylko jedno zadanie !!!!!!!!!!!!!!!!!
user profile image
Piotrek

3880

7 grudnia 2016
Cześć, wykupiłaś dostęp do pojedynczego zadania. Jeżeli jesteś zainteresowana wykupieniem premium na dłuższy okres wszystko znajdziesz tutaj: Link . Pozdrawiamy!
Informacje
Matematyka z plusem 4. Arytmetyka. Wersja B
Autorzy: M. Dobrowolska, S. Wojtan, P. Zarzycki
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.
     

    proste-rownlegle
Wzajemne położenie odcinków

Dwa odcinki mogą być względem siebie prostopadłe lub równoległe.

  1. Odcinki prostopadłe – odcinki zawarte w prostych prostopadłych – symboliczny zapis $$AB⊥CD$$.

    odcinkiprostopadle
     
  2. Odcinki równoległe – odcinki zawarte w prostych równoległych – symboliczny zapis $$AB∥CD$$.

    odicnkirownolegle
 
Zobacz także
Udostępnij zadanie