Matematyka

Autorzy:M.Dobrowolska

Wydawnictwo:GWO

Rok wydania:2015

Rak, co w szczypcach trzymał liść 4.56 gwiazdek na podstawie 16 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Matematyka

Rak, co w szczypcach trzymał liść

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie

5
 Zadanie

Wiemy, że rak i świerszcz wybierali się do żaby na imieniny - oznacza to, że do pokonania mieli taką samą drogę. 

Świerszcz w każdej minucie pokonywał o 5 metrów więcej niż rak, zatem możemy oznaczyć: 

`x\ \ \ -\ \ \ "ilość metrów pokonanych przez raka w ciągu minuty"` 

`x+5\ \ \ -\ \ \ "ilość metrów pokonanych przez świerszcza w ciągu minuty"` 

 

Wiemy, że świerszcz pokonał drogę w ciągu 40 minut, natomiast rak potrzebował 2 godzin, czyli 120 minut. 

Droga pokonana przez raka i przez świerszcz jest taka sama: x metrów przez 120 minut to tyle samo, co x+5 metrów przez 40 minut:

`x*120=(x+5)*40\ \ \ \ \ |:40`  

`3x=x+5\ \ \ \ |-x`  

`2x=5\ \ \ \ \ |:2` 

`x=2,5` 

 

 

Wiemy już, że rak w ciągu jednej minuty pokonywał 2,5 metra. 

Na pokonanie całej trasy potrzebował 120 minut, obliczamy więc, jaką odległość pokonał: 

`120*2,5\ m=120*2 1/2\ m=strike120^60*5/strike2^1\ m=300\ m` 

Odpowiedź:

Rak Nieborak musiał przejść trasę 300 m.