Matematyka

Matematyka z plusem 4. Liczby Naturalne. Wersja A (Zeszyt ćwiczeń, GWO)

Uzupełnij: 4.57 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Matematyka

a) 

2 zł = 200 gr

20 zł = 2000 gr

310 zł = 31000 gr

1230 zł= 123000 gr

dla ułatwienia dla podania wyniku gr trzeba to liczby zł dodac dwa zera. 

b) 

500 gr = 5 zł 

1000 gr = 10 zł 

3500 gr = 35 zł

30200 gr = 302 zł

dla ułatwienia dla podania wyniku zł trzab od liczby gr odjąć dwa zera 

c) 

750 zł =75 000 gr

25 000 gr = 250 zł

2400 zł = 240 000 gr

100 000 gr = 1000 zł

DYSKUSJA
Informacje
Matematyka z plusem 4. Liczby Naturalne. Wersja A
Autorzy: Małgorzata Dobrowolska , Stanisław Wojtan, Piotr Zarzycki
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $$ P=2 cm•4 cm=8 cm^2 $$
    Pole tego prostokąta jest równe 8 $$cm^2$$.

Pole powierzchni prostopadłościanu

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.

$$P_p$$ -> pole powierzchni

Pole powierzchni prostopadłościanu
 

Każdy prostopadłościan ma 3 pary takich samych ścian.

Pole powierzchni oblicza się z poniższego wzoru, gdzie $$P_1$$, $$P_2$$ i $$P_3$$ to pola ścian prostopadłościanu.

$$P_p=2•P_1+2•P_2+2•P_3$$

Wzór na pole powierzchni prostopadłościanu możemy zapisać w następującej postaci:
$$P_p = 2•a•b + 2•b•c + 2•a•c$$ (a,b,c - wymiary prostopadłościanu)
 

  Zapamiętaj

Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $$P_p=6•P$$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $$P_p = 6•a•a = 6•a^2$$ (a - bok sześcianu).

Zobacz także
Udostępnij zadanie