Matematyka

Czy każda funkcja a) rosnąca b) malejąca 4.5 gwiazdek na podstawie 6 opinii
  1. Liceum
  2. 1 Klasa
  3. Matematyka

Czy każda funkcja a) rosnąca b) malejąca

1
 Zadanie
2
 Zadanie
3
 Zadanie

4
 Zadanie

5
 Zadanie

a)

Każda funkcja rosnąca jest różnowartościowa.

Uzasadnienie:

Porównajmy definicję funkcji różnowartościowej i definicję funkcji rosnącej. Funkcja rosnąca to taka funkcja, która dowolnym argumentom x1 i x2, takim, że x1<x2 przyporządkowuje wartości f(x1) i f(x2), takie, że f(x1)<f(x2). Funkcja różnowartościowa dowolnym argumentom x1 i x2, takim, że x1≠x2, przyporządkowuje wartości f(x1) i f(x2), takie, że f(x1)≠f(x2). 

Jeśli:

`x_1<x_2`          to jednocześnie        `x_1!=x_2`

A jeśli

`f(x_1)<f(x_2) `               to jednocześnie        `f(x_1)!=f(x_2)`

b)

Każda funkcja malejąca jest różnowartościowa.

Uzasadnienie:

Porównajmy definicję funkcji różnowartościowej i definicję funkcji malejącej. Funkcja malejąca to taka funkcja, która dowolnym argumentom x1 i x2, takim, że x1<x2 przyporządkowuje wartości f(x1) i f(x2), takie, że f(x1)>f(x2). Funkcja różnowartościowa dowolnym argumentom x1 i x2, takim, że x1≠x2, przyporządkowuje wartości f(x1) i f(x2), takie, że f(x1)≠f(x2). 

Jeśli:

`x_1<x_2`          to jednocześnie        `x_1!=x_2`

A jeśli

 `f(x_1)>f(x_2)`               to jednocześnie        `f(x_1)!=f(x_2)`

DYSKUSJA
Informacje
Matematyka Pazdro. Podręcznik do liceum i technikum klasa 1. Zakres podstawowy
Autorzy: Marcin Kurczab, Elżbieta Kurczab i Elżbieta Świda
Wydawnictwo: OE Pazdro
Rok wydania:
Autor rozwiązania
user profile image

Monika

1645

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Dzielenie pisemne
  1. Zapisujemy dzielną, nad nią kreskę, a obok, po znaku dzielenia, dzielnik. W naszym przykładzie podzielimy liczbę 1834 przez 14, inaczej mówiąc zbadamy ile razy liczba 14 „mieści się” w liczbie 1834.

    dzielenie1
     
  2. Dzielimy pierwszą cyfrę dzielnej przez dzielnik. Jeśli liczba ta jest mniejsza od dzielnika, to bierzemy pierwsze dwie lub więcej cyfr dzielnej i dzielimy przez dzielnik. Inaczej mówiąc, w dzielnej wyznaczamy taką liczbę, którą można podzielić przez dzielnik. Wynik dzielenia zapisujemy nad kreską, a resztę z dzielenia zapisujemy pod spodem (pod dzielną).

    W naszym przykładzie w dzielnej bierzemy liczbę 18 i dzielimy ją przez 14, czyli sprawdzamy ile razy 14 zmieści się w 18. Liczba 14 zmieści się w 18 jeden raz, jedynkę piszemy nad kreską (nad ostatnią cyfrą liczby 18, czyli nad 8). Następnie wykonujemy mnożenie 1•14=14 i wynik 14 wpisujemy pod liczbą 18, oddzielamy kreską i wykonujemy odejmowanie 18-14=4 i wynik 4 zapisujemy pod kreską.
    Opisane postępowanie możemy zapisać następująco: 18÷14=1 reszty 4.

    dzielenie2
     
  3. Do wyniku odejmowania opisanego w punkcie 2, czyli do otrzymanej reszty z dzielenia dopisujemy kolejną cyfrę dzielnej i wykonujemy dzielenie przez dzielnik. Tak jak poprzednio wynik zapisujemy nad kreską, a pod spodem resztę z tego dzielenia.
    W naszym przykładzie wygląda to następująco: do 4 dopisujemy cyfrę 3 (czyli kolejną cyfrę, która znajduje się za liczbą 18) i otrzymujemy liczbę 43, którą dzielimy przez dzielnik 14. Inaczej mówiąc sprawdzamy ile razy 14 zmieści się w 43. Liczba 14 zmieści się w 43 trzy razy, czyli 3 piszemy nad kreską (za 1), a następnie wykonujemy mnożenie 3•14=42i wynik 42 zapisujemy pod liczbą 43, oddzielamy kreską i wykonujemy odejmowanie 43-42=1 i wynik 1 zapisujemy pod kreską.
    Opisane postępowanie możemy zapisać: 43÷14=3 reszty 1.

    dzielenie2
     
  4. Analogicznie jak poprzednio do otrzymanej reszty dopisujemy kolejną cyfrę dzielnej i wykonujemy dzielenie przez dzielnik.
    W naszym przykładzie:
    do 1 dopisujemy ostatnią cyfrę dzielnej, czyli 4. Otrzymujemy liczbę 14, którą dzielimy przez dzielnik 14, w wyniku otrzymujemy 1 i wpisujemy ją nad kreską (po3). Następnie wykonujemy mnożenie 1•14=14 w wynik 14 zapisujemy pod 14, oddzielamy kreską i wykonujemy odejmowanie 14-14=0.
    Opisane postępowanie możemy zapisać 14÷14=1, czyli otrzymaliśmy dzielenie bez reszty, co kończy nasze dzielenie.

    dzielenie3
     
  5. Wynik dzielenia liczby 1834 przez 14 znajduje się nad kreską, czyli otrzymujemy ostatecznie iloraz 1834÷14=131.

Najmniejsza wspólna wielokrotność (nww)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest: 15.
    1. Wypiszmy wielokrotności liczby 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...;
    2. Wypiszmy wielokrotności liczby 5: 5, 10, 15, 20, 25, 30, 35, ...;
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.
  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest: 12.
    1. Wypiszmy wielokrotności liczby 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...;
    2. Wypiszmy wielokrotności liczby 6: 6, 12, 18, 24, 30, 36, 42, 48, ...;
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6, widzimy że jest to 12.
Zobacz także
Udostępnij zadanie