Matematyka

Matematyka Pazdro. Podręcznik do liceum i technikum klasa 1. Zakres podstawowy (Podręcznik, OE Pazdro)

Pole jednej kratki jest równe 1. Oblicz pola 4.56 gwiazdek na podstawie 9 opinii
  1. Liceum
  2. 1 Klasa
  3. Matematyka

Pole jednej kratki jest równe 1. Oblicz pola

1
 Zadanie

2
 Zadanie
3
 Zadanie

Pole jednej kratki wynosi 1. Obliczamy bok tej kratki:

rownanie matematyczne              rownanie matematyczne       rownanie matematyczne

rownanie matematyczne

Dzielimy figury na prostsze i obliczamy pole każdej z nich.

a)

rownanie matematyczne

rownanie matematyczne

rownanie matematyczne

rownanie matematyczne

b)

rownanie matematyczne

rownanie matematyczne

rownanie matematyczne

rownanie matematyczne

rownanie matematyczne

c)

,,Odcinamy" pewne cześci i składamy nową figurę (jak w przykładzie na stronie 196)

Części figury ponumerowano tylko po to, aby było widoczne gdzie je przeniesiono:

rownanie matematyczne

d)

rownanie matematyczne

rownanie matematyczne

rownanie matematyczne

 

DYSKUSJA
user avatar
Marysia

18 października 2017
dzieki!
user avatar
Krystian

21 września 2017
dzieki
Informacje
Autorzy: Marcin Kurczab, Elżbieta Kurczab i Elżbieta Świda
Wydawnictwo: OE Pazdro
Rok wydania:
Autor rozwiązania
user profile

Monika

21702

Nauczyciel

Wiedza
Dzielniki

Dzielnik liczby to taka liczba, przez którą dana liczba jest podzielna. Dzielnikiem każdej liczby naturalnej n (n>1) jest 1 oraz ona sama.

Inaczej mówiąc, dzielnikiem liczby naturalnej  `n`  nazywamy taką liczbę naturalną  `m`, że  `n=k*m` `k`   jest liczbą naturalną. 


Przykład:

10 dzieli się przez 1, 2, 5 i 10. Wynika z tego, że dzielnikami liczby 10 są liczby 1, 2, 5 i 10.

Możemy też powiedzieć, że:

  • 1 jest dzielnikiem 10 bo  `10=10*1`   
  • 2 jest dzielnikiem 10 bo  `10=5*2`  
  • 5 jest dzielnikiem 10 bo  `10=2*5`  
  • 10 jest dzielnikiem 10 bo  `10=1*10`  


Uwaga!!! 

Jeżeli liczba naturalna `m`  jest dzielnikiem liczby `n` , to liczba `n`  jest wielokrotnością liczby `m` .

Przykład:

Liczba 2 jest dzielnikiem liczby 10, czyli liczba 10 jest wielokrotnością liczby 2.


Dowolną liczbę naturalną n większą od 1 (n>1), która ma tylko dwa dzielniki, 1 oraz samą siebie, nazywamy liczbą pierwszą.

Liczbami pierwszymi są liczby: 2, 3, 5, 7, 11, 13, 17, 19, 23...

Liczbę naturalną n (n>1) niebędącą liczbą pierwszą, czyli posiadającą więcej niż dwa dzielniki, nazywamy liczbą złożoną.

Liczbami złożonymi są: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18...


Zapamiętaj!!!

Liczby 0 i 1 nie są ani liczbami pierwszymi ani złożonymi. 

 
Cechy podzielności liczb

Cechy podzielności liczb ułatwiają znalezienie dzielników, zwłaszcza dużych liczb.

Dzielnik liczby to taka liczba, przez którą dana liczba jest podzielna. Dzielnikiem każdej liczby naturalnej n (n>1) jest 1 oraz ona sama.


Cechy podzielności:

  1. Podzielność liczby przez 2

    Liczba jest podzielna przez 2, gdy jej ostatnią cyfrą jest 0, 2, 4, 6 lub 8.

    Przykład:

    • 1 896 319 128 → liczba jest podzielna przez 2, ponieważ jej ostatnią cyfrą jest 8.
       
  2. Podzielność liczby przez 3

    Liczba jest podzielna przez 3, gdy suma jej cyfr jest liczbą podzielną przez 3.

    Przykład:

    • 7 981 272 → liczba jest podzielna przez 3, ponieważ suma jej cyfr (7+9+8+1+2+7+2=36) jest liczbą podzielną przez 3.
       
  3. Podzielność liczby przez 4

    Liczba jest podzielna przez 4, gdy jej dwie ostatnie cyfry tworzą liczbę podzielną przez 4.

    Przykład:

    • 2 147 816 → liczba jest podzielna przez 4, ponieważ jej dwie ostatnie cyfry tworzą liczbę 16, a liczba 16 jest podzielna przez 4.
       
  4. Podzielność liczby przez 5

    Liczba jest podzielna przez 5, gdy jej ostatnią cyfrą jest 0 lub 5.

    Przykład:

    • 18 298 415 → liczba jest podzielna przez 5, ponieważ jej ostatnią cyfrą jest 5.
       
  5. Podzielność liczby przez 6

    Liczba jest podzielna przez 6, gdy jednocześnie dzieli się przez 2 i 3.

    Przykład:

    • 1248 → liczba jest podzielna przez 6, ponieważ dzieli się przez 2 (jej ostatnią cyfrą jest 8), a także dzieli się przez 3 (suma jej cyfr 1+2+4+8=15 jest liczbą podzielną przez 3).
       
  6. Podzielność liczby przez 9

    Liczba jest podzielna przez 9, gdy suma jej cyfr jest liczbą podzielną przez 9.

    Przykład:

    • 1 890 351 -> liczba jest podzielna przez 9, ponieważ suma jej cyfr (1+8+9+0+3+5+1=27) jest jest liczbą podzielną przez 9.
       
  7. Podzielność liczby przez 10

    Liczba jest podzielna przez 10, gdy jej ostatnią cyfra jest 0.

    Przykład:

    • 192 290 → liczba jest podzielna przez 10, ponieważ jej ostatnią cyfrą jest 0.
       
  8. Podzielność liczby przez 25

    Liczba jest podzielna przez 25, gdy dwie ostatnie cyfry tworzą liczbę podzielną przez 25.

    Przykład:

    • 4675 → liczba jest podzielna przez 25, ponieważ jej dwie ostatnie cyfry tworzą liczbę 75, a 75 jest podzielne przez 25.
       
  9. Podzielność liczby przez 100

    Liczba jest podzielna przez 100, gdy jej dwie ostatnie cyfry to zera.

    Przykład:

    • 12 848 100 → liczba jest podzielna przez 100, ponieważ jej dwie ostatnie cyfry to zera.
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom