Matematyka

Matematyka 2001 (Podręcznik, WSiP)

a) Sprawdź, czy ze wzoru Simpsona 4.56 gwiazdek na podstawie 9 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

a) Sprawdź, czy ze wzoru Simpsona

1
 Zadanie

`a)` 

PROSTOKĄT

W prostokącie zachodzi równość: 

`d_1=d=d_2` , więc pole (ze wzoru Simpsona) możemy zapisać następująco: 

`P=(d_1+4d+d_2)/6*h=` `(d_1+4d_1+d_1)/6*h=` `(6d_1)/6*h=d_1*h` 

Czyli otrzymujemy zwykły wzór na pole - iloczyn długości boków prostokąta

 

 

 

KWADRAT

Tak samo jako w prostokącie zachodzi równość odcinków, dodatkowo odcinki d₁ i h także są równe, więc otrzymamy wzór na pole:

`P=d_1*h=h*h=h^2` 

 

 

 

RÓWNOLEGŁOBOK

W rónoległoboku zachodzą takie same równości jak w prostokącie, dlatego także otrzymamy "zwykły" wzór na pole:

`P=d_1*h` 

 

 

TRAPEZ

W trapezie zachodzi równość:

`d=(d_1+d_2)/2` 

Więc wzór Simpsona możemy zapisać następująco:

`P=(d_1+4d+d_2)/6*h=` `(d_1+4(d_1+d_2)/2+d_2)/6*h=` 

`\ \ \ =(d_1+2(d_1+d_2)+d_2)/6*h=` `(3d_1+3d_2)/6*h=`  

`\ \ \ =(d_1+d_2)/2*h` 

Otrzymaliśmy "zwykły" wzór na pole trapezu

 

 

 

`b)` 

Pole sześciokąta foremnego o boku d₂ składa się z 6 pól trójkątów foremnych o boku d₂:

`P=6*(d_2^2sqrt3)/4=` `3*(d_2^2sqrt3)/2`   

 

W sześciokącie foremnym zachodzi równość d₁=d₂. Chcemy zapisać d w zależności od d₂, zauważamy trójkąty prostokątne o kątach 90°, 60° i 30°:

Dla przypomnienia - boki trójkąta o katach 90°, 60° i 30°:

Więc możemy zapisać:

`d_2=2b ` 

`x=b=1/2d_2` 

`d=1/2d_2+d_2+1/2d_2=2d_2` 

`h=2*(1/2sqrt3d_2)=sqrt3d_2`  

 

Obliczamy pole ze wzoru Simpsona:

`P=(d_1+4d+d_2)/6*h=(d_2+4*2d_2+d_2)/6*sqrt3d_2=` 

`\ \ \ =(10d_2)/6*sqrt3d_2=(5d_2)/3*sqrt3d_2=` `5*(d_2^2sqrt3)/3` 

 

Wzór na pole otrzymany w ten sposób różni się od wzoru na pole sześciokąta foremnego.     

 

 

 

` `   

 

 

 

 

    ₁ ₁    
DYSKUSJA
user profile image
Marcelina

8 kwietnia 2018
dzięki :):)
user profile image
Adrianna

18 marca 2018
dzięki
user profile image
Alan

10 grudnia 2017
dzięki :)
Informacje
Autorzy: Praca zbiorowa
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Kolejność wykonywania działań

Przy rozwiązywaniu bardziej skomplikowanego działania, najważniejsze jest zachowanie kolejności wykonywania działań.

Kolejność wykonywania działań:

  1. Wykonywanie działań w nawiasach;

  2. Potęgowanie i pierwiastkowanie;

  3. Mnożenie i dzielenie (jeżeli w działaniu występuje dzielenie lub zarówno mnożenie, jak i dzielenie, to działania wykonujemy w kolejności w jakiej są zapisane od lewej do prawej strony).
    Przykład: $$16÷2•5=8•5=40$$;

  4. Dodawanie i odejmowanie (jeżeli w działaniu występuje odejmowanie lub zarówno dodawanie, jak i odejmowanie, to działania wykonujemy w kolejności w jakiej są zapisane od lewej strony do prawej).
    Przykład: $$24 - 6 +2 = 18 + 2 = 20$$.

Przykład:

$$(45-9•3)-4=(45-27)-4=18-4=14 $$
 
Porównywanie ułamków dziesiętnych

Aby ustalić, który z dwóch ułamków dziesiętnych jest większy, wystarczy porównać kolejno rzędy, zaczynając od najwyższego. Oznacza to, że porównujemy kolejno cyfry z których zbudowany jest ułamek dziesiętny, czyli zaczynamy od cyfr części całkowitej, a później przechodzimy to porównywania cyfr części dziesiętnych.

W praktyce porównywanie ułamków dziesiętnych odbywa się następująco:
  • Najpierw porównujemy części całkowite, jeżeli nie są równe, to mniejszy jest ułamek o mniejszej części całkowitej;

  • Jeżeli obie części całkowite są równe, to porównujemy ich części dziesiętne. Jeżeli części dziesiętne nie są równe, to mniejszy jest ułamek o mniejszej części dziesiętnej;

  • Gdy części dziesiętne są równe, to porównujemy ich części setne, tysięczne itd., aż do uzyskania odpowiedzi.

  Zapamiętaj

Gdy na końcu ułamka dziesiętnego dopisujemy lub pomijamy zero, to jego wartość się nie zmienia.

Przykłady:
$$0,34=0,340=0,3400=0,34000=...$$
$$0,5600=0,560=0,56$$

W związku z powyższą uwagą, jeżeli w czasie porównywania ułamków w którymś zabraknie cyfr po przecinku, to należy dopisać odpowiednią liczbę zer.
 

Przykład: Porównajmy ułamki 5,25 i 5,23.
Przed porównywaniem ułamków wygodnie jest zapisać porównywane liczby jedna pod drugą, ale tak by zgadzały się rzędy, czyli przecinek pod przecinkiem.

porownanie1
Widzimy, że w porównywanych ułamkach części jedności są takie same, części dziesiętne także są równe, natomiast w rzędzie części setnych 5>3, zatem ułamek 5,25 jest większy od 5,23. Zatem 5,25>5,23.

Przykład: Porównajmy ułamki 0,8 i 0,81.
Zapisujemy ułamki jeden pod drugim, tak aby zgadzały się rzędy, czyli przecinek pod przecinkiem. Ponadto dopisujemy 0 w ułamku 0,8.

porownanie2

Widzimy, że w porównywanych ułamkach części jedności są takie same, części dziesiętne także są równe, natomiast w rzędzie części setnych 0<1, zatem ułamek 0,81 jest większy od 0,8. Zatem 0,81>0,8.

Zobacz także
Udostępnij zadanie