Matematyka

Matematyka z kluczem 4. Podręcznik cz. 2 (Podręcznik, Nowa Era)

Oblicz obwód a) trójkąta o bokach 2 m, 2,1 m oraz 1,82 m 4.71 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Matematyka

Oblicz obwód a) trójkąta o bokach 2 m, 2,1 m oraz 1,82 m

8
 Zadanie

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie
I
 Zadanie
II
 Zadanie
III
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
user profile image
adrian1324

10 stycznia 2017
czemu nie ma str 127 i 128
user profile image
Paweł

13004

11 stycznia 2017
@adrian1324 Cześć, na tych stronach są przykłady w całości rozwiązane:)
Informacje
Matematyka z kluczem 4. Podręcznik cz. 2
Autorzy: Marcin Braun, Agnieszka Mańkowska, Małgorzata Paszyńska
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Paweł

13004

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Kolejność wykonywania działań

Przy rozwiązywaniu bardziej skomplikowanego działania, najważniejsze jest zachowanie kolejności wykonywania działań.

Kolejność wykonywania działań:

  1. Wykonywanie działań w nawiasach;

  2. Potęgowanie i pierwiastkowanie;

  3. Mnożenie i dzielenie (jeżeli w działaniu występuje dzielenie lub zarówno mnożenie, jak i dzielenie, to działania wykonujemy w kolejności w jakiej są zapisane od lewej do prawej strony).
    Przykład: $$16÷2•5=8•5=40$$;

  4. Dodawanie i odejmowanie (jeżeli w działaniu występuje odejmowanie lub zarówno dodawanie, jak i odejmowanie, to działania wykonujemy w kolejności w jakiej są zapisane od lewej strony do prawej).
    Przykład: $$24 - 6 +2 = 18 + 2 = 20$$.

Przykład:

$$(45-9•3)-4=(45-27)-4=18-4=14 $$
 
System rzymski

System rzymski jest systemem zapisywania liczb, który w przeciwieństwie do zapisu pozycyjnego, pozwala zapisać liczby przy pomocy znaków o zawsze ustalonej wartości.

Wyróżniamy cyfry podstawowe:

  • I = 1
  • X = 10
  • C = 100
  • M = 1000

oraz cyfry pomocnicze:

  • V = 5
  • L = 50
  • D = 500

Korzystając z systemu rzymskiego liczbę naturalną przedstawiamy jako ciąg powyższych cyfr uporządkowanych od wartości największej do najmniejszej, a wartość liczby jest równa sumie wartości poszczególnych cyfr.

Przykłady:

  • XV → 10+5=15
  • XXXII → 10+10+10+1+1=32
  • CXXVII → 100+10+10+5+1+1=127
  • MDLVII → 1000+500+50+5+1+1=1557

W celu uproszczenia wielu zapisów dopuszcza się umieszczenie cyfry podstawowej o mniejszej wartości przed cyfrą o większej wartości. W takim jednak przypadku wartość mniejszej cyfry uważamy za ujemną.

Przykłady:

  • IX → -1+10=10-1=9
  • CD → -100+500=500-100=400
  • XLII → -10+50+1+1=50-10+2=42
  • CML → -100+1000+50=1000-100+50=950

Ważne jest, że w systemie rzymskim możemy zapisać maksymalnie 3 takie same cyfry podstawowe (czyli I, X, C, M) obok siebie. Cyfry pomocnicze (czyli V, L, D) nie mogą występować obok siebie.

Przykład:

  • XXXII → 10+10+10+1+1=32

  Ciekawostka

System rzymski pochodzi od wysoko rozwiniętej cywilizacji Etrusków (ok. 500 r. p.n.e.). Początkowo zapisywano liczby za pomocą pionowych kresek I,II,III,IIII,IIIII,... .

Rzymianie przejęli cyfry od Etrusków i poddali je pewnym modyfikacjom oraz udoskonaleniom, co dało początki dzisiaj znanemu systemowi rzymskiemu.

Cyfr rzymskich używano na terenie imperium aż do jego upadku w V w. n.e. W średniowieczu stały się standardowym systemem liczbowym całej łacińskiej Europy, jednak pod koniec tej epoki coraz częściej używano już cyfr arabskich, prostszych i wygodniejszych do obliczeń oraz zapisywania dużych liczb. System rzymski stopniowo wychodził z codziennego użycia, chociaż do dziś jest powszechnie znany w Europie i stosowany do wielu celów.

Zobacz także
Udostępnij zadanie